Potential Relationship between Cerebral Fractional Tissue Oxygen Extraction (FTOE) and the Use of Sedative Agents during the Perioperative Period in Neonates and Infants
Abstract
:1. Introduction
2. Materials and Methods
Statistical Methods
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stolwijk, L.J.; Lemmers, P.M.; Harmsen, M.; Groenendaal, F.; de Vries, L.S.; van der Zee, D.C.; Manon, J.N.; Benders, M.J.N.; van Herwaarden-Lindeboom, M.Y.A. Neurodevelopmental Outcomes after Neonatal Surgery for Major Noncardiac Anomalies. Pediatrics 2016, 137, e20151728. [Google Scholar] [CrossRef] [Green Version]
- Ranger, M.; Synnes, A.R.; Vinall, J.; Grunau, R.E. Internalizing behaviours in school-age children born very preterm are predicted by neonatal pain and morphine exposure. Eur. J. Pain 2014, 18, 844–852. [Google Scholar] [CrossRef]
- Carbajal, R.; Eriksson, M.; Courtois, E.; Boyle, E.; Avila-Alvarez, A.; Andersen, R.D.; Sarafidis, K.; Polkki, T.; Matos, C.; Lago, P.; et al. Sedation and analgesia practices in neonatal intensive care units (EUROPAIN): Results from a prospective cohort study. Lancet Respir. Med. 2015, 3, 796–812. [Google Scholar] [CrossRef]
- Duerden, E.G.; Guo, T.; Dodbiba, L.; Chakravarty, M.M.; Chau, V.; Poskitt, K.J.; Synnes, A.; Grunau, R.E.; Miller, S.P. Midazolam dose correlates with abnormal hippocampal growth and neurodevelopmental outcome in preterm infants. Ann. Neurol. 2016, 79, 548–559. [Google Scholar] [CrossRef] [PubMed]
- Zwicker, J.G.; Miller, S.P.; Grunau, R.E.; Chau, V.; Brant, R.; Studholme, C.; Liu, M.; Synnes, A.; Poskitt, K.J.; Stiver, M.L.; et al. Smaller Cerebellar Growth and Poorer Neurodevelopmental Outcomes in Very Preterm Infants Exposed to Neonatal Morphine. J. Pediatr. 2016, 172, 81–87.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, F.; Scoones, G.P. A practical approach to cerebral near-infrared spectroscopy (NIRS) directed hemodynamic management in noncardiac pediatric anesthesia. Paediatr. Anaesth. 2019, 29, 993–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Variane, G.F.T.; Chock, V.Y.; Netto, A.; Pietrobom, R.F.R.; Van Meurs, K.P. Simultaneous near-infrared spectroscopy (NIRS) and amplitude-integrated electroencephalography (aEEG): Dual use of brain monitoring techniques improves our understanding of physiology. Front. Pediatr. 2020, 7, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alderliesten, T.; Lemmers, P.A.M.; Smarius, J.J.M.; van de Vosse, R.E.; Baerts, W.; van Bel, F. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J. Pediatr. 2013, 162, 698–704. [Google Scholar] [CrossRef] [PubMed]
- El-Dib, M.; Aly, S.; Govindan, R.; Mohamed, M.; du Plessis, A.; Aly, H. Brain Maturity and Variation of Oxygen Extraction in Premature Infants. Am. J. Perinatol. 2016, 33, 814–820. [Google Scholar] [CrossRef]
- Vesoulis, Z.A.; Liao, S.M.; Mathur, A.M. Gestational age-dependent relationship between cerebral oxygen extraction and blood pressure. Pediatr. Res. 2017, 82, 934–939. [Google Scholar] [CrossRef] [Green Version]
- Vesoulis, Z.A.; Lust, C.E.; Liao, S.M.; Trivedi, S.B.; Mathur, A.M. Early hyperoxia burden detected by cerebral near-infrared spectroscopy is superior to pulse oximetry for prediction of severe retinopathy of prematurity. J. Perinatol. 2016, 36, 966–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olbrecht, V.A.; Skowno, J.; Marchesini, V.; Ding, L.; Jiang, Y.; Ward, C.G.; Yu, G.; Liu, H.; Schurink, B.; Vutskits, L.; et al. An International, Multicenter, Observational Study of Cerebral Oxygenation during Infant and Neonatal Anesthesia. Anesthesiology 2018, 128, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Michelet, D.; Arslan, O.; Hilly, J.; Mangalsuren, N.; Brasher, C.; Grace, R.; Bonnard, A.; Malbezin, S.; Nivoche, Y.; Dahmani, S. Intraoperative changes in blood pressure associated with cerebral desaturation in infants. Paediatr. Anaesth. 2015, 25, 681–688. [Google Scholar] [CrossRef]
- Razlevice, I.; Rugyte, D.C.; Strumylaite, L.; Macas, A. Assessment of risk factors for cerebral oxygen desaturation during neonatal and infant general anesthesia: An observational, prospective study. BMC Anesthesiol. 2016, 16, 107. [Google Scholar] [CrossRef] [Green Version]
- Bartocci, M.; Bergqvist, L.L.; Lagercrantz, H.; Anand, K.J. Pain activates cortical areas in the preterm newborn brain. Pain 2006, 122, 109–117. [Google Scholar] [CrossRef]
- Mele, C. The Use of near infrared spectroscopy to assess infant pain. J. Pediatr. Nurs. 2018, 39, 85–88. [Google Scholar] [CrossRef]
- Baughman, V.L.; Hoffman, W.E.; Albrecht, R.F.; Miletich, D.J. Cerebral vascular and metabolic effects of fentanyl and midazolam in young and aged rats. Anesthesiology 1987, 67, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, C.; Hgerdal, M.; Kaasik, A.E.; Siesjö, B.K. The effects of diazepam on cerebral blood flow and oxygen consumption in rats and its synergistic interaction with nitrous oxide. Anesthesiology 1976, 45, 319–325. [Google Scholar] [CrossRef]
- Baik, N.; Urlesberger, B.; Schwaberger, B.; Schmölzer, G.M.; Mileder, L.; Avian, A.; Pichler, G. Reference Ranges for Cerebral Tissue Oxygen Saturation Index in Term Neonates during Immediate Neonatal Transition after Birth. Neonatology 2015, 108, 283–286. [Google Scholar] [CrossRef]
- Alderliesten, T.; Dix, L.; Baerts, W.; Alexander Caicedo, A.; van Huffel, S.; Naulaers, G.; Groenendaal, F.; van Bel, F.; Lemmers, P. Reference values of regional cerebral oxygen saturation during the first 3 days of life in preterm neonates. Pediatr. Res. 2016, 79, 55–64. [Google Scholar] [CrossRef]
- Staffa, S.J.; Kohane, D.S.; Zurakowski, D. Quantile Regression and Its Applications: A Primer for Anesthesiologists. Anesth. Analg. 2019, 128, 820–830. [Google Scholar] [CrossRef]
- Langslet, A.; Meberg, A.; Bredesen, J.E.; Lunde, P.K. Plasma concentrations of diazepam and N-desmethyldiazepam in newborn infants after intravenous, intramuscular, rectal and oral administration. Acta Paediatr. Scand. 1978, 67, 699–704. [Google Scholar] [CrossRef]
- Pacifici, G.M. Clinical pharmacology of midazolam in neonates and children: Effect of disease-a review. Int. J. Pediatr. 2014, 2014, 309342. [Google Scholar] [CrossRef] [Green Version]
- Thigpen, J.C.; Odle, B.L.; Harirforoosh, S. Opioids: A Review of Pharmacokinetics and Pharmacodynamics in Neonates, Infants, and Children. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 591–609. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.H.; Greisen, G.; Pryds, O. Comparison of the effects of phenobarbitone and morphine administration on EEG activity in preterm babies. Acta Paediatr. 1993, 82, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Bernet, V.; Latal, B.; Natalucci, G.; Doell, C.; Ziegler, A.; Wohlrab, G. Effect of sedation and analgesia on postoperative amplitude-integrated EEG in newborn cardiac patients. Pediatr. Res. 2010, 67, 650–655. [Google Scholar] [CrossRef] [Green Version]
- Olischar, M.; Davidson, A.J.; Lee, K.J.; Hunt, R.W. Effects of morphine and midazolam on sleep-wake cycling in amplitude-integrated electroencephalography in post-surgical neonates ≥ 32 weeks of gestational age. Neonatology 2012, 101, 293–300. [Google Scholar] [CrossRef]
- Tataranno, M.L.; Alderliesten, T.; de Vries, L.S.; Groenendaal, F.; Toet, M.C.; Lemmers, P.M.A.; Vosse van de, R.E.; van Bel, F.; Benders, M.J.N.L. Early oxygen-utilization and brain activity in preterm infants. PLoS ONE 2015, 10, e0124623. [Google Scholar] [CrossRef]
- Caicedo, A.; Thewissen, L.; Smits, A.; Naulaers, G.; Allegaert, K.; Van Huffel, S. Relation between EEG Activity and Brain Oxygenation in Preterm Neonates. Adv. Exp. Med. Biol. 2017, 977, 133–139. [Google Scholar] [CrossRef]
- Wikström, S.; Pupp, I.H.; Rosén, I.; Norman, E.; Fellman, V.; Ley, D.; Hellström-Westas, L. Early single-channel aEEG/EEG predicts outcome in very preterm infants. Acta Paediatr. 2012, 101, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Rhondali, O.; André, C.; Pouyau, A.; Mahr, A.; Juhel, S.; De Queiroz, M.; Rhzioual-Berrada, K.; Mathews, S.; Chassard, D. Sevoflurane anesthesia and brain perfusion. Paediatr. Anaesth. 2015, 25, 180–185. [Google Scholar] [CrossRef]
- Plomgaard, A.M.; Alderliesten, T.; Austin, T.; van Bel, F.; Benders, M.; Claris, O.; Dempsey, E.; Fumagalli, M.; Gluud, C.; Hagmann, C.; et al. Early biomarkers of brain injury and cerebral hypo- and hyperoxia in the SafeBoosC II trial. PLoS ONE 2017, 12, e0173440. [Google Scholar] [CrossRef]
- Plomgaard, A.M.; Alderliesten, T.; van Bel, F.; Benders, M.; Claris, O.; Cordeiro, M.; Dempsey, E.; Fumagalli, M.; Gluud, C.; Hyttel-Sorensen, S.; et al. No neurodevelopmental benefit of cerebral oximetry in the first randomised trial (SafeBoosC II) in preterm infants during the first days of life. Acta Paediatr. 2019, 108, 275–281. [Google Scholar] [CrossRef]
- Kissin, I.; Brown, P.T.; Bradley, E.L., Jr.; Robinson, C.A.; Cassady, J.L. Diazepam—Morphine hypnotic synergism in rats. Anesthesiology 1989, 70, 689–694. [Google Scholar] [CrossRef]
- Barr, J.; Donner, A. Optimal intravenous dosing strategies for sedatives and analgesics in the intensive care unit. Crit. Care Clin. 1995, 11, 827–847. [Google Scholar] [CrossRef]
- Brandt, J.; Alkabanni, W.; Alessi-Severini, S.; Leong, C. Translating Benzodiazepine Utilization Data into Meaningful Population Exposure: Integration of Two Metrics for Improved Reporting. Clin. Drug Investig. 2018, 38, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Jobes, D.R.; Kennell, E.M.; Bush, G.L.; Mull, T.D.; Lecky, J.H.; Behar, M.G.; Wollman, H. Cerebral blood flow and metabolism during morphine--nitrous oxide anesthesia in man. Anesthesiology 1977, 47, 16–18. [Google Scholar] [CrossRef]
Variable | Median (Range) or n (%) |
---|---|
Age (days) | 10.5 (0–90) |
Male sex | 27 (58.7) |
Weight (g) | 3366.33 (878.44) 1 |
Gestation (weeks) | 37.67 (2.41) 1 |
Preterm infants | 15 (32.61) |
ASA class | |
1 | 2 (4.35) |
2 | 21 (45.65) |
3 | 17 (36.96) |
4 | 6 (13.04) |
Type of surgery | |
Abdominal | 24 (52.17) |
Other | 22 (47.83) |
Patients on preoperative mechanical ventilation | 6 (13.04) |
Duration of surgery (min) | 80 (30–260) |
Intraoperative rSO2 (%) | 79.76 (8.89) 1 |
Intraoperative FTOE | 0.16 (0.03–0.44) |
Sedative Agent | n (%) | Cumulative Dose, mg·kg−1, Median (Range) | ||
---|---|---|---|---|
Diazepam | Midazolam | Morphine | ||
Diazepam | 9 (19.57) | 0.5 (0.1–1.6) | ||
Midazolam | 4 (8.7) | 0.12 (0.01–0.4) | ||
Morphine | 3 (6.52) | 0.17 (0.1–0.4) | ||
Diazepam + midazolam | 2 (4.35) | 0.9 (0.9–0.9) | 0.04 (0.04–0.04) | |
Diazepam + morphine | 9 (19.57) | 0.44 (0.08–1.3) | 0.17 (0.01–0.58) | |
Midazolam + morphine | – | – | – | – |
Diazepam + midazolam + morphine | 4 (8.7) | 0.4 (0.2–0.45) | 0.1 (0.01–0.2) | 0.12 (0.08–0.95) |
Total | 31 (67.39) | 0.475 (0.08–1.6) | 0.07 (0.01–0.4) | 0.155 (0.01–0.95) |
Variable | Regression Beta Coefficient (β) | 95% Confidence Interval |
---|---|---|
Preoperative variables | ||
Age (days) | −0.45 | −1.54; 0.64 |
Sex (female vs. male) | −6.2 | −50.25; 37.85 |
Weight (g) | −0.01 | −0.04; 0.02 |
Gestation (weeks) | 0.63 | −10.60; 11.87 |
Gestation (preterm vs. term) | −3.30 | −59.30; 52.70 |
ASA class (1 vs. 2 vs.3 vs.4) | 2.10 | −27.54; 31.74 |
Type of surgery (abdominal vs. other) | −21.4 | −60.62; 17.82 |
Preoperative hemoglobin (g·L−1) | 0.28 | −0.44; 1.00 |
Preoperative mechanical ventilation (no vs. yes) | −33.4 | −103.75; 36.95 |
24 h preoperative cumulative dose of sedative agents (mg·kg−1) | 54.96 | 14.30; 95.62 1 |
Intraoperative variables | ||
Duration of surgery (min) | −0.15 | −0.64; 0.35 |
SpO2 (%) | 2.85 | −6.85; 12.55 |
Arterial blood pressure (mean, mm·Hg) | 1.31 | −1.27; 3.89 |
End tidal (ET) CO2 (mm Hg) | 1.80 | −1.25; 4.85 |
ET sevoflurane concentration (%) | −6.53 | −61.36; 48.31 |
Fentanyl dose (µg·kg−1) | 9.76 | −10.54; 30.05 |
Variable | Patients, Given Sedative Agents (n = 31) Median (Range) or n (%) | Patients Not Given Sedative Agents (n = 15) Median (Range) or n (%) |
---|---|---|
ASA class | ||
1 | 1 (3.23) | 1 (6.67) |
2 | 11 (35.48) | 10 (66.67) |
3 | 15 (48.39) | 2 (13.33) |
4 | 4 (12.9) | 2 (13.33) |
Male sex | 19 (61.29) | 8 (53.33) |
Weight (g) | 3224.61 (786.67) 1 | 3659.2 (1001.88) 1 |
Age (days) | 6 (0–32) | 40 (1–90) 2 |
Abdominal surgery | 20 (64.52) | 4 (26.67) 3 |
Preterm infants | 9 (29.03) | 6 (40) |
Patients on preoperative mechanical ventilation | 5 (16.3) | 1 (6.67) |
Preoperative Hb (g·L−1) | 166.42 (23.75) 1 | 136.27 (41.94) 1,4 |
Preoperative blood lactate concentration (mmol·L−1) | 2.24 (0.88) 1 | 2.27 (0.53) 1 |
Intraoperative SpO2 (%) | 96.75 (90.51–99.85) | 97.53 (87.85–99.96) |
Intraoperative arterial blood pressure (mean, mm Hg) | 47.37 (9.65) 1 | 48.1 (7.11) 1 |
Intraoperative ET CO2 | 34.12 (7.57) 1 | 36.92 (6.17) 1 |
Intraoperative ET sevoflurane concentration (%) | 1.69 (0.4) 1 | 2.08 (0.34) 1,5 |
Intraoperative fentanyl dose (µg·kg−1) | 3.2 (1.1–7.3) | 2.7 (1.0–6.5) |
Intraoperative rSO2 (%) | 80.61 (1.58) 1 | 78.02 (2.35) 1 |
Regression Beta Coefficient (β) | 95% Confidence Interval | p Value | |
---|---|---|---|
24 h preoperative cumulative dose of sedatives (mg·kg−1) 1 | 47.12 | 7.32; 86.92 | 0.022 |
24 h preoperative cumulative dose of sedatives (mg·kg−1) 2 | 14.26 | −15.97; 44.49 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rugytė, D.Č.; Strumylaitė, L. Potential Relationship between Cerebral Fractional Tissue Oxygen Extraction (FTOE) and the Use of Sedative Agents during the Perioperative Period in Neonates and Infants. Children 2020, 7, 209. https://doi.org/10.3390/children7110209
Rugytė DČ, Strumylaitė L. Potential Relationship between Cerebral Fractional Tissue Oxygen Extraction (FTOE) and the Use of Sedative Agents during the Perioperative Period in Neonates and Infants. Children. 2020; 7(11):209. https://doi.org/10.3390/children7110209
Chicago/Turabian StyleRugytė, Danguolė Č, and Loreta Strumylaitė. 2020. "Potential Relationship between Cerebral Fractional Tissue Oxygen Extraction (FTOE) and the Use of Sedative Agents during the Perioperative Period in Neonates and Infants" Children 7, no. 11: 209. https://doi.org/10.3390/children7110209
APA StyleRugytė, D. Č., & Strumylaitė, L. (2020). Potential Relationship between Cerebral Fractional Tissue Oxygen Extraction (FTOE) and the Use of Sedative Agents during the Perioperative Period in Neonates and Infants. Children, 7(11), 209. https://doi.org/10.3390/children7110209