Muscle Ultrasonographic Elastography in Children: Review of the Current Knowledge and Application
Abstract
:1. Introduction
Technical Aspects of Elastography
2. Materials and Methods
3. Factors Influencing Elastography
3.1. Differences Related to Patient Sex
3.2. Age-Related Differences
3.3. Differences Related to Anthropometry and Anisotropy
3.4. Passive Muscle Stretching Influences Study Results
3.5. Exercise and Effort’s Effect on Muscle Elasticity
3.6. Influence of Tissue Compression on Elastography
3.7. Operator-Related Reliability
4. Elastography in Different Muscle Disorders
4.1. Muscle Elastography in Muscular Dystrophies
4.2. Other Myopathies
4.3. Cerebral Palsy
4.4. CP Treatment Evaluation Using Elastography
5. Muscle Elastography in Other Diseases
5.1. Chronic Kidney Diseases
5.2. Gluteus Muscle Contracture
5.3. Torticollis
5.4. Osgood-Schlatter Disease
5.5. Elbow Injuries Related to Sports
5.6. Oncology: Musculoskeletal Tumours
6. Study Limitations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dietrich, C.; Bamber, J.; Berzigotti, A.; Bota, S.; Cantisani, V.; Castera, L.; Cosgrove, D.; Ferraioli, G.; Friedrich-Rust, M.; Gilja, O.H.; et al. EFSUMB Guidelines and Recommendations on the Clinical Use of Liver Ultrasound Elastography, Update 2017 (Long Version). Ultraschall Med. 2017, 38, e16–e47. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, S.; Tsushima, A.; Oda, T.; Kaga, M. The passive mechanical properties of muscles and tendons in children affected by Osgood-Schlatter disease. J. Pediatr. Orthop. 2020, 40, e243–e247. [Google Scholar] [CrossRef] [PubMed]
- Debernard, L.; Robert, L.; Charleux, F.; Bensamoun, S.F. A possible clinical tool to depict muscle elasticity mapping using magnetic resonance elastography. Muscle Nerve 2013, 47, 903–908. [Google Scholar] [CrossRef]
- Pichiecchio, A.; Alessandrino, F.; Bortolotto, C.; Cerica, A.; Rosti, C.; Raciti, M.V.; Rossi, M.; Berardinelli, A.; Baranello, G.; Bastianello, S.; et al. Muscle ultrasound elastography and MRI in preschool children with Duchenne muscular dystrophy. Neuromuscul. Disord. 2018, 28, 476–483. [Google Scholar] [CrossRef]
- Berko, N.S.; Hay, A.; Sterba, Y.; Wahezi, D.; Levin, T.L. Efficacy of ultrasound elastography in detecting active myositis in children: Can it replace MRI? Pediatr. Radiol. 2015, 45, 1522–1528. [Google Scholar] [CrossRef]
- Ewertsen, C.; Carlsen, J.F.; Christiansen, I.R.; Jensen, J.A.; Nielsen, M.B. Evaluation of healthy muscle tissue by strain and shear wave elastography—Dependency on depth and ROI position in relation to underlying bone. Ultrasonics 2016, 71, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Alfuraih, A.M.; O’Connor, P.; Hensor, E.; Tan, A.L.; Emery, P.; Wakefield, R.J. The effect of unit, depth, and probe load on the reliability of muscle shear wave elastography: Variables affecting reliability of SWE. J. Clin. Ultrasound 2018, 46, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Gilligan, L.A.; Trout, A.T.; Bennett, P.; Dillman, J.R. Repeatability and agreement of shear wave speed measurements in phantoms and human livers across 6 Ultrasound 2-Dimensional shear wave elastography systems. Investig. Radiol. 2020, 55, 191–199. [Google Scholar] [CrossRef]
- Heizelmann, A.; Tasdemir, S.; Schmidberger, J.; Gräter, T.; Kratzer, W.; Grüner, B. Measurements of the trapezius and erector spinae muscles using virtual touch imaging quantification ultrasound-Elastography: A cross section study. BMC Musculoskelet. Disord. 2017, 18, 370. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Zhu, J.; Gao, J.; Chen, S.; Liu, F.; Li, W.; Liu, Y.; Ariun, B. Effect of acquisition depth and precompression from probe and couplant on shear wave elastography in soft tissue: An in vitro and in vivo study. Quant. Imaging Med. Surg. 2020, 10, 754–765. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.J.; Kim, M.J.; Kim, H.Y.; Roh, Y.H.; Lee, M.J. Comparison of shear wave velocities on ultrasound elastography between different machines, transducers, and acquisition depths: A phantom study. Eur. Radiol. 2016, 26, 3361–3367. [Google Scholar] [CrossRef]
- Song, Y.; Lee, S.; Yoo, D.H.; Jang, K.S.; Bae, J. Strain sonoelastography of inflammatory myopathies: Comparison with clinical examination, magnetic resonance imaging and pathologic findings. Br. J. Radiol. 2016, 89, 20160283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goo, M.; Johnston, L.M.; Hug, F.; Tucker, K. Systematic review of instrumented measures of skeletal muscle mechanical properties: Evidence for the application of Shear Wave Elastography with children. Ultrasound Med. Biol. 2020, 46, 1831–1840. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.E.; Eby, S.F.; Song, P.; Zhao, H.; Landry, B.W.; Kingsley-Berg, S.; Bamlet, W.R.; Chen, S.; Sieck, G.C.; An, K.N. Feasibility and reliability of quantifying passive muscle stiffness in young children by using shear wave ultrasound elastography. J. Ultrasound Med. 2015, 34, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, H.K.; Sheng, S.Y.; Liang, S.M.; Lu, H.; Chen, R.Y.; Pan, M.; Wen, Z.B. Quantitative evaluation of passive muscle stiffness by shear wave elastography in healthy individuals of different ages. Eur. Radiol. 2020, 31, 3187–3194. [Google Scholar] [CrossRef]
- Koppenhaver, S.L.; Scutella, D.; Sorrell, B.A.; Yahalom, J.; Fernández-de-las-Peñas, C.; Childs, J.D.; Shaffer, S.W.; Shinohara, M. Normative parameters and anthropometric variability of lumbar muscle stiffness using ultrasound shear-wave elastography. Clin. Biomech. 2019, 62, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Eby, S.F.; Cloud, B.A.; Brandenburg, J.E.; Giambini, H.; Song, P.; Chen, S.; LeBrasseur, N.K.; An, K.N. Shear wave elastography of passive skeletal muscle stiffness: Influences of sex and age throughout adulthood. Clin. Biomech. 2015, 30, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yong, Q.; Pu, T.; Zheng, C.; Wang, M.; Shi, S.; Li, L. Grayscale ultrasonic and shear wave elastographic characteristics of the Achilles’ tendon in patients with familial hypercholesterolemia: A pilot study. Eur. J. Radiol. 2018, 109, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Berko, N.S.; FitzGerald, E.F.; Amaral, T.D.; Payares, M.; Levin, T.L. Ultrasound elastography in children: Establishing the normal range of muscle elasticity. Pediatr. Radiol. 2014, 44, 158–163. [Google Scholar] [CrossRef]
- Wenz, H.; Dieckmann, A.; Lehmann, T.; Brandl, U.; Mentzel, H.J. Strain ultrasound elastography of muscles in healthy children and healthy adults. RoFo 2019, 191, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Lacourpaille, L.; Hug, F.; Guével, A.; Péréon, Y.; Magot, A.; Hogrel, J.Y.; Nordez, A. Non-invasive assessment of muscle stiffness in patients with duchenne muscular dystrophy. Muscle Nerve 2015, 51, 284–286. [Google Scholar] [CrossRef]
- Öztürk, M.; Sayinbatur, B. Real-time ultrasound elastography of the Achilles tendon in patients with cerebral palsy: Is there a correlation between strain ratio and biomechanical indicators? J. Med. Ultrason. 2018, 45, 143–148. [Google Scholar] [CrossRef]
- Gennisson, J.L.; Deffieux, T.; Mace, E.; Montaldo, G.; Fink, M.; Tanter, M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med. Biol. 2010, 36, 789–801. [Google Scholar] [CrossRef]
- Brandenburg, J.E.; Eby, S.F.; Song, P.; Kingsley- Berg, S.; Bamlet, W.; Sieck, G.C.; An, K.N. Quantifying passive muscle stiffness in children with and without cerebral palsy using ultrasound shear wave elastography. Dev. Med. Child Neurol. 2016, 176, 1288–1294. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, E.; Akkoc, O.; Bayramoglu, Z.; Gozubuyuk, O.B.; Kural, D.; Azamat, S.; Adaletli, I. Effects of static stretching duration on muscle stiffness and blood flow in the rectus femoris in adolescents. Med. Ultrason. 2019, 21, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.M.; Gaebler-Spira, D.; Zhang, L.; Rymer, W.Z.; Steele, K.M. Use of shear wave ultrasound elastography to quantify muscle properties in cerebral palsy. Clin. Biomech. 2016, 31, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Dağ, N.; Cerit, M.N.; Şendur, H.N.; Zinnuroğlu, M.; Muşmal, B.N.; Cindil, E.; Oktar, S.O. The utility of shear wave elastography in the evaluation of muscle stiffness in patients with cerebral palsy after botulinum toxin A injection. Med. Ultrason. 2020, 47, 609–615. [Google Scholar] [CrossRef]
- Mansouri, M.; Birgani, P.M.; Kharazi, M.R.; Lotfian, M.; Naeimipoor, M.; Mirbagheri, M.M. Estimation of gait parameter using sonoelastography in children with cerebral palsy. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1729–1732. [Google Scholar] [CrossRef]
- Linek, P.; Wolny, T.; Sikora, D.; Klepek, A. Supersonic shear imaging for quantification of lateral abdominal muscle shear modulus in pediatric population with scoliosis: A reliability and agreement study. Ultrasound Med. Biol. 2019, 45, 1551–1561. [Google Scholar] [CrossRef]
- Saito, A.; Minagawa, H.; Watanabe, H.; Kawasaki, T.; Okada, K. Elasticity of the pronator teres muscle in youth baseball players with elbow injuries: Evaluation using ultrasound strain elastography. J. Shoulder Elb. Surg. 2018, 27, 1642–1649. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Park, H.J.; Choi, Y.J.; Choi, S.H.; Kook, S.H.; Rho, M.H.; Chung, E.C. Value of adding sonoelastography to conven-tional ultrasound in patients with congenital muscular torticollis. Pediatr. Radiol. 2013, 43, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Lacourpaille, L.; Gross, R.; Hug, F.; Guével, A.; Péréon, Y.; Magot, A.; Hogrel, J.Y.; Nordez, A. Effects of Duchenne muscular dystrophy on muscle stiffness and response to electrically-induced muscle contraction: A 12-month follow-up. Neuromuscul. Disord. 2017, 27, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.R.; Park, G.Y.; Lee, S.U.; Chung, I. Spastic cerebral palsy in children: Dynamic sonoelastographic findings of medial gastrocnemius. Radiology 2012, 263, 794–801. [Google Scholar] [CrossRef]
- Vola, E.A.; Albano, M.; Di Luise, C.; Servodidio, V.; Sansone, M.; Russo, S.; Corrado, B.; Servodio Iammarrone, C.; Caprio, M.G.; Vallone, G. Use of ultrasound shear wave to measure muscle stiffness in children with cerebral palsy. J. Ultrasound 2018, 21, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Bilgici, M.C.; Bekci, T.; Ulus, Y.; Ozyurek, H.; Aydin, O.F.; Tomak, L.; Selcuk, M.B. Quantitative assessment of muscular stiffness in children with cerebral palsy using acoustic radiation force impulse (ARFI) ultrasound elastography. J. Med. Ultrason. 2018, 45, 295–300. [Google Scholar] [CrossRef]
- Lallemant-Dudek, P.; Vergari, C.; Dubois, G.; Forin, V.; Vialle, R.; Skalli, W. Ultrasound shearwave elas-tography to characterize muscles of healthy and cerebral palsy children. Sci. Rep. 2021, 11, 3577. [Google Scholar] [CrossRef]
- Doruk Analan, P.; Aslan, H. Association between the elasticity of hip muscles and the hip migration index in cerebral palsy. J. Ultrasound Med. 2019, 38, 2667–2672. [Google Scholar] [CrossRef]
- Park, G.Y.; Kwon, D.R. Sonoelastographic evaluation of medial gastrocnemius muscles intrinsic stiffness after rehabilitation therapy with botulinum toxin a injection in spastic cerebral palsy. Arch. Phys. Med. Rehabil. 2012, 93, 2085–2089. [Google Scholar] [CrossRef]
- Bilgici, M.C.; Bekci, T.; Ulus, Y.; Bilgici, A.; Tomak, L.; Selcuk, M.B. Quantitative assessment of muscle stiffness with acoustic radiation force impulse elastography after botulinum toxin A injection in children with cerebral palsy. J. Med. Ultrason. 2018, 45, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, J.E.; Eby, S.F.; Song, P.; Bamlet, W.R.; Sieck, G.C.; An, K.N. Quantifying effect of onabotulinum toxin a on passive muscle stiffness in children with cerebral palsy using ultrasound shear wave elastography. Am. J. Phys. Med. Rehabil. 2018, 97, 500–506. [Google Scholar] [CrossRef]
- Guo, R.; Xiang, X.; Qiu, L. Shear-wave elastography assessment of gluteal muscle contracture: Three case reports. Medicine 2018, 97, e13071. [Google Scholar] [CrossRef]
- Li, A.; Peng, X.; Ma, Q.; Dong, Y.; Mao, C.; Hu, Y. Diagnostic performance of conventional ultrasound and quantitative and qualitative real-time shear wave elastography in musculoskeletal soft tissue tumors. J. Orthop. Surg. Res. 2020, 15, 103–107. [Google Scholar] [CrossRef] [PubMed]
Study | Method | Population | Muscle Assessed | Before BoNT-A | 1 Month after BoNT-A | p Value | |
---|---|---|---|---|---|---|---|
Ceyhan Bilgici et al., 2018 [39] | ARFI | n = 12 (6♀) 8.58 ± 2.48 yo | Gastrocnemius | SWS: 3.20 ± 0.14 m/s | SWS: 2.45 ± 0.21 m/s | <0.01 | |
Park and Kwon, 2012 [38] | SE | n = 17 (7♀) 4.75 ± 1.83 yo | Medial gastrocnemius | RTS score: 3.4 | RTS score: 1.5 | <0.05 | |
Dağ et al., 2020 [27] | SWE | n = 24 (10♀) 2–11 yo | Lateral gastrocnemius | Stiffness: 45.9 ± 6.5 kPa | Stiffness: 25.0 ± 5.7 kPa | <0.01 | |
Anterior tibialis | Stiffness: 36.9 ± 7.9 kPa | Stiffness: 28.4 ± 5.2 kPa | <0.01 | ||||
Brandenburg et al., 2018 [40] | SWE | n = 9 (4♀) 2–9 yo | Lateral gastrocnemius | 0° PF | 1 month vs. 3 months after BoNT-A* | 0.02 | |
10° PF | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cebula, A.; Cebula, M.; Kopyta, I. Muscle Ultrasonographic Elastography in Children: Review of the Current Knowledge and Application. Children 2021, 8, 1042. https://doi.org/10.3390/children8111042
Cebula A, Cebula M, Kopyta I. Muscle Ultrasonographic Elastography in Children: Review of the Current Knowledge and Application. Children. 2021; 8(11):1042. https://doi.org/10.3390/children8111042
Chicago/Turabian StyleCebula, Agnieszka, Maciej Cebula, and Ilona Kopyta. 2021. "Muscle Ultrasonographic Elastography in Children: Review of the Current Knowledge and Application" Children 8, no. 11: 1042. https://doi.org/10.3390/children8111042
APA StyleCebula, A., Cebula, M., & Kopyta, I. (2021). Muscle Ultrasonographic Elastography in Children: Review of the Current Knowledge and Application. Children, 8(11), 1042. https://doi.org/10.3390/children8111042