The Relative Importance of Age at Peak Height Velocity and Fat Mass Index in High-Intensity Interval Training Effect on Cardiorespiratory Fitness in Adolescents: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Sampling Plan
2.2. Power Calculation
2.3. Participants
2.4. Anthropometric Measurements
2.5. Intervention Program
2.6. Cardiorespiratory Fitness
2.7. Prediction Age at Peak Height Velocity (APHV)
2.8. Theoretical Model
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 6th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1995. [Google Scholar]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjöström, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilder, R.P.; Greene, J.A.; Winters, K.L.; Iii, W.B.L.; Gubler, K.D.; Edlich, R.F. Physical Fitness Assessment: An Update. J. Long-Term Eff. Med. Implants 2006, 16, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, J.; Rokita, A.; Koźlenia, D.; Popowczak, M. Optimal Values of Body Composition for the Lowest Risk of Failure in Tabata Training’s Effects in Adolescents: A Pilot Study. BioMed Res. Int. 2021, 2021, 6675416. [Google Scholar] [CrossRef] [PubMed]
- Tarnichkova, M.; Petrova, M. Dynamics of development and evaluation of agility in school education (1st–12th grade). J. Appl. Sports Sci. 2020, 2, 19–30. [Google Scholar] [CrossRef]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Essentials of Exercise Physiology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006. [Google Scholar]
- Bacon, A.P.; Carter, R.E.; Ogle, E.A.; Joyner, M.J. VO2max Trainability and High Intensity Interval Training in Humans: A Meta-Analysis. PLoS ONE 2013, 8, e73182. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Floody, P.; Espinoza-Silva, M.; García-Pinillos, F.; Latorre-Román, P. Effects of 28 weeks of high-intensity interval training during physical education classes on cardiometabolic risk factors in Chilean schoolchildren: A pilot trial. Eur. J. Pediatr. 2018, 177, 1019–1027. [Google Scholar] [CrossRef]
- Heath, G.W.; Parra, D.C.; Sarmiento, O.L.; Andersen, L.B.; Owen, N.; Goenka, S.; Montes, F.; Brownson, R.C.; the Lancet Physical Activity Series Working Group. Evidence-based intervention in physical activity: Lessons from around the world. Lancet 2012, 380, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Domaradzki, J.; Cichy, I.; Rokita, A.; Popowczak, M. Effects of Tabata Training During Physical Education Classes on Body Composition, Aerobic Capacity, and Anaerobic Performance of Under-, Normal- and Overweight Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 876. [Google Scholar] [CrossRef] [Green Version]
- Montoye, H.J. The Harvard step test and work capacity. Rev. Can. Biol. 1953, 11, 491–499. [Google Scholar]
- Brouha, L. The Step Test: A Simple Method of Measuring Physical Fitness for Muscular Work in Young Men. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1943, 14, 31–37. [Google Scholar] [CrossRef]
- Ryhming, I. A modified harvard step test for the evaluation of physical fitness. Arbeitsphysiologie 1953, 15, 235–250. [Google Scholar] [CrossRef]
- Zeiher, J.; Ombrellaro, K.J.; Perumal, N.; Keil, T.; Mensink, G.B.M.; Finger, J.D. Correlates and Determinants of Cardiorespiratory Fitness in Adults: A Systematic Review. Sports Med. Open 2019, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Chin, E.C.; Yu, A.P.; Lai, C.W.; Fong, D.Y.; Chan, D.K.; Wong, S.H.; Sun, F.; Ngai, H.H.; Yung, P.S.H.; Siu, P.M. Low-Frequency HIIT Improves Body Composition and Aerobic Capacity in Overweight Men. Med. Sci. Sports Exerc. 2019, 52, 56–66. [Google Scholar] [CrossRef]
- Falkner, B. Hypertension in children and adolescents: Epidemiology and natural history. Pediatr. Nephrol. 2009, 25, 1219–1224. [Google Scholar] [CrossRef] [Green Version]
- Tomkinson, G.R.; Lang, J.J.; Tremblay, M.S. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br. J. Sports Med. 2017, 53, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Mcguigan, M.R.; Newton, M.J.; Winchester, J.B.; Nelson, A.G. Relationship Between Isometric and Dynamic Strength in Recreationally Trained Men. J. Strength Cond. Res. 2010, 24, 2570–2573. [Google Scholar] [CrossRef]
- Raghuveer, G.; Hartz, J.; Lubans, D.R.; Takken, T.; Wiltz, J.L.; Mietus-Snyder, M.; Perak, A.M.; Baker-Smith, C.; Pietris, N.; Edwards, N.M. Cardiorespiratory Fitness in Youth: An Important Marker of Health: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e101–e118. [Google Scholar] [CrossRef]
- Murawska-Cialowicz, E.; Wolanski, P.; Zuwala-Jagiello, J.; Feito, Y.; Petr, M.; Kokstejn, J.; Stastny, P.; Goliński, D. Effect of HIIT with Tabata Protocol on Serum Irisin, Physical Performance, and Body Composition in Men. Int. J. Environ. Res. Public Health 2020, 17, 3589. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.; Mesa, J.L.; Gutiérrez, Á.; Sjöström, M. Cardiovascular fitness in adolescents: The influence of sexual maturation status—The AVENA and EYHS studies. Am. J. Hum. Biol. 2007, 19, 801–808. [Google Scholar] [CrossRef]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Moreno, L.A.; Urzanqui, A.; González-Gross, M.; Gutiérrez, A. Health-related physical fitness according to chronological and biological age in adolescents. The AVENA study. J. Sport. Med. Phys. Fit. 2008, 48, 371–379. [Google Scholar]
- Gontarev, S.; Zivkovic, V.; Naumovski, M.; Kalac, R. Development of the physical capabilities of studentsof both sexes aged from 6 to 14 years old. Pesh 2013, 2, 11–18. [Google Scholar]
- Werneck, A.O.; Silva, D.R.; Agostinete, R.R.; Fernandes, R.A.; Valente-dos-Santos, J.; Coelho-e-Silva, M.J.; Ronque, E.R.V. Tracking of cardiorespiratory fitness from childhood to early adolescence: Moderation effect of somatic maturation. Rev. Paul. Pediatr. 2019, 37, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Sun, R.; Nie, M.; Wang, M.; Yao, Z.; Feng, Q.; Xu, W.; Yuan, R.; Gao, Z.; Cheng, Q.; et al. The Cardiorespiratory fitness of children and adolescents in Tibet at altitudes over 3500 meters. PLoS ONE 2021, 16, e0256258. [Google Scholar] [CrossRef]
- Silva, S.; Mendes, H.; Freitas, D.; Prista, A.; Tani, G.; Katzmarzyk, P.T.; Baxter-Jones, A.D.G.; Valdivia, A.B.; Maia, J. Development of Physical Performance Tasks during Rapid Growth in Brazilian Children: The Cariri Healthy Growth Study. Int. J. Environ. Res. Public Health 2019, 16, 5029. [Google Scholar] [CrossRef] [Green Version]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U.; Lancet Physical Activity Series Working Group. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 380, 247–257. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- De Lima, T.R.; Silva, D.A.S. Association between sports practice and physical education classes and lifestyle among adolescents. Hum. Mov. 2019, 20, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Filho, N.; Reuter, C.; Silveira, J.; Borfe, L.; Renner, J.; Pohl, H. Low performance-related physical fitness levels are associated with clustered cardiometabolic risk score in schoolchildren: A cross-sectional study. Hum. Mov. 2022, 23, 113–119. [Google Scholar] [CrossRef]
- Martin-Smith, R.; Cox, A.; Buchan, D.S.; Baker, J.S.; Grace, F.; Sculthorpe, N. High Intensity Interval Training (HIIT) Improves Cardiorespiratory Fitness (CRF) in Healthy, Overweight and Obese Adolescents: A Systematic Review and Meta-Analysis of Controlled Studies. Int. J. Environ. Res. Public Health 2020, 17, 2955. [Google Scholar] [CrossRef]
- Drenowatz, C.; Hinterkörner, F.; Greier, K. Physical Fitness and Motor Competence in Upper Austrian Elementary School Children—Study Protocol and Preliminary Findings of a State-Wide Fitness Testing Program. Front. Sports Act. Living 2021, 3, 635478. [Google Scholar] [CrossRef]
- Popowczak, M.; Rokita, A.; Koźlenia, D.; Domaradzki, J. The high-intensity interval training introduced in physical education lessons decrease systole in high blood pressure adolescents. Sci. Rep. 2022, 12, 1974. [Google Scholar] [CrossRef]
- Solera-Martínez, M.; Herraiz-Adillo, Á.; Manzanares-Domínguez, I.; De La Cruz, L.L.; Martínez-Vizcaíno, V.; Pozuelo-Carrascosa, D.P. High-Intensity Interval Training and Cardiometabolic Risk Factors in Children: A Meta-analysis. Pediatrics 2021, 148, e2021050810. [Google Scholar] [CrossRef] [PubMed]
- Leahy, A.A.; Eather, N.; Smith, J.J.; Hillman, C.H.; Morgan, P.J.; Plotnikoff, R.C.; Nilsson, M.; Costigan, S.A.; Noetel, M.; Lubans, D.R. Feasibility and Preliminary Efficacy of a Teacher-Facilitated High-Intensity Interval Training Intervention for Older Adolescents. Pediatr. Exerc. Sci. 2019, 31, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.C.; Taaffe, D.; Lubans, D. High-intensity interval training for improving health-related fitness in adolescents: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Thivel, D.; Masurier, J.; Baquet, G.; Timmons, B.W.; Pereira, B.; Berthoin, S.; Duclos, M.; Aucouturier, J. High-intensity interval training in overweight and obese children and adolescents: Systematic review and meta-analysis. J. Sports Med. Phys. Fit. 2019, 59, 310–324. [Google Scholar] [CrossRef]
- Alvarez, C.; Ramírez-Campillo, R.; Ramírez-Vélez, R.; Izquierdo, M. Effects of 6-Weeks High-Intensity Interval Training in Schoolchildren with Insulin Resistance: Influence of Biological Maturation on Metabolic, Body Composition, Cardiovascular and Performance Non-responses. Front. Physiol. 2017, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Eddolls, W.T.B.; McNarry, M.A.; Stratton, G.; Winn, C.O.N.; Mackintosh, K.A. High-Intensity Interval Training Interventions in Children and Adolescents: A Systematic Review. Sports Med. 2017, 47, 2363–2374. [Google Scholar] [CrossRef] [Green Version]
- Engel, F.A.; Ackermann, A.; Chtourou, H.; Sperlich, B. High-Intensity Interval Training Performed by Young Athletes: A Systematic Review and Meta-Analysis. Front. Physiol. 2018, 9, 1012. [Google Scholar] [CrossRef] [Green Version]
- Domaradzki, J.; Koźlenia, D.; Popowczak, M. The Mediation Role of Fatness in Associations between Cardiorespiratory Fitness and Blood Pressure after High-Intensity Interval Training in Adolescents. Int. J. Environ. Res. Public Health 2022, 19, 1698. [Google Scholar] [CrossRef]
- Domaradzki, J.; Koźlenia, D.; Popowczak, M. Sex Moderated Mediation of the Musculoskeletal Fitness in Relationship between High-Intensive Interval Training Performing during Physical Education Classes and Cardiorespiratory Fitness in Healthy Boys and Girls. BioMed Res. Int. 2022, 2022, 8760620. [Google Scholar] [CrossRef]
- Domaradzki, J.; Koźlenia, D.; Popowczak, M. Prevalence of Positive Effects on Body Fat Percentage, Cardiovascular Parameters, and Cardiorespiratory Fitness after 10-Week High-Intensity Interval Training in Adolescents. Biology 2022, 11, 424. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Cvetković, N.; Stojanovic, E.; Stojiljković, N.; Nikolić, D.; Scanlan, A.; Milanović, Z. Exercise training in overweight and obese children: Recreational football and high-intensity interval training provide similar benefits to physical fitness. Scand. J. Med. Sci. Sports 2018, 28, 18–32. [Google Scholar] [CrossRef]
- Bajaj, A.; Appadoo, S.; Bector, C.; Chandra, S. Measuring physical fitness and cardiovascular efficiency using harvard step test approach under fuzzy environment. ASAC 2008, 29. [Google Scholar]
- Moore, S.A.; Mckay, H.A.; Macdonald, H.; Nettlefold, L.; Baxter-Jones, A.D.G.; Cameron, N.; Brasher, P.M.A. Enhancing a Somatic Maturity Prediction Model. Med. Sci. Sports Exerc. 2015, 47, 1755–1764. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Amorim, L.D.A.F.; Fiaccone, R.L.; Santos, C.A.S.T.; Dos Santos, T.N.; De Moraes, L.T.L.P.; Oliveira, N.F.; Barbosa, S.O.; Dos Santos, D.N.; Dos Santos, L.M.; Matos, S.M.A.; et al. Structural equation modeling in epidemiology. Cad. Saúde Pública 2010, 26, 2251–2262. [Google Scholar] [CrossRef]
- Fritz, M.S.; MacKinnon, D.P. Required Sample Size to Detect the Mediated Effect. Psychol. Sci. 2007, 18, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-H. The criteria for selecting appropriate fit indices in structural equation modeling and their rationales. Korean J. Clin. Psychol. 2000, 19, 161–177. [Google Scholar]
- Albaladejo-Saura, M.; Vaquero-Cristóbal, R.; González-Gálvez, N.; Esparza-Ros, F. Relationship between Biological Maturation, Physical Fitness, and Kinanthropometric Variables of Young Athletes: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 328. [Google Scholar] [CrossRef]
- Scalzo, R.L.; Peltonen, G.L.; Binns, S.E.; Shankaran, M.; Giordano, G.R.; Hartley, D.A.; Klochak, A.L.; Lonac, M.C.; Paris, H.L.R.; Szallar, S.E.; et al. Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J. 2014, 28, 2705–2714. [Google Scholar] [CrossRef]
- Kibler, W.; Chandler, T.J.; Uhl, T.; Maddux, R.E. A musculoskeletal approach to the preparticipation physical examination. Am. J. Sports Med. 1989, 17, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Bogataj, Š.; Trajković, N.; Cadenas-Sanchez, C.; Sember, V. Effects of School-Based Exercise and Nutrition Intervention on Body Composition and Physical Fitness in Overweight Adolescent Girls. Nutrients 2021, 13, 238. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, M.R.; Waclawovsky, G.; Perin, L.; Camboim, I.; Eibel, B.; Lehnen, A.M. Effects of high-intensity interval training on endothelial function, lipid profile, body composition and physical fitness in normal-weight and overweight-obese adolescents: A clinical trial. Physiol. Behav. 2020, 213, 112728. [Google Scholar] [CrossRef] [PubMed]
- Tjønna, A.E.; Stølen, T.O.; Bye, A.; Volden, M.; Slørdahl, S.A.; Ødegård, R.; Skogvoll, E.; Wisløff, U. Aerobic interval training reduces cardiovascular risk factors more than a multitreatment approach in overweight adolescents. Clin. Sci. 2009, 116, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Fairclough, S.J.; Stratton, G. Effects of a physical education intervention to improve student activity levels. Phys. Educ. Sport Pedagog. 2006, 11, 29–44. [Google Scholar] [CrossRef]
- Ng, K.; Cooper, J.; McHale, F.; Clifford, J.; Woods, C. Barriers and facilitators to changes in adolescent physical activity during COVID-19. BMJ Open Sport Exerc. Med. 2020, 6, e000919. [Google Scholar] [CrossRef]
- Chambonniere, C.; Lambert, C.; Fearnbach, N.; Tardieu, M.; Fillon, A.; Genin, P.; Larras, B.; Melsens, P.; Bois, J.; Pereira, B.; et al. Effect of the COVID-19 lockdown on physical activity and sedentary behaviors in French children and adolescents: New results from the ONAPS national survey. Eur. J. Integr. Med. 2021, 43, 101308. [Google Scholar] [CrossRef]
- Morales-Palomo, F.; Ramirez-Jimenez, M.; Ortega, J.F.; Pallarés, J.G.; Mora-Rodriguez, R. Acute Hypotension after High-Intensity Interval Exercise in Metabolic Syndrome Patients. Endoscopy 2017, 38, 560–567. [Google Scholar] [CrossRef]
- Racil, G.; Coquart, J.B.; Elmontassar, W.; Haddad, M.; Goebel, R.; Chaouachi, A.; Amri, M.; Chamari, K. Greater effects of high- compared with moderate-intensity interval training on cardio-metabolic variables, blood leptin concentration and ratings of perceived exertion in obese adolescent females. Biol. Sport 2016, 33, 145–152. [Google Scholar] [CrossRef]
- Batacan, R.B., Jr.; Duncan, M.J.; Dalbo, V.J.; Tucker, P.S.; Fenning, A.S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. 2017, 51, 494–503. [Google Scholar] [CrossRef]
- Hay, J.; Wittmeier, K.; MacIntosh, A.; Wicklow, B.; Duhamel, T.; Sellers, E.; Dean, H.; Ready, E.; Berard, L.; Kriellaars, D.; et al. Physical activity intensity and type 2 diabetes risk in overweight youth: A randomized trial. Int. J. Obes. 2015, 40, 607–614. [Google Scholar] [CrossRef]
- Brown, E.C.; Hew-Butler, T.; Marks, C.R.; Butcher, S.J.; Choi, M.D. The Impact of Different High-Intensity Interval Training Protocols on Body Composition and Physical Fitness in Healthy Young Adult Females. BioResearch Open Access 2018, 7, 177–185. [Google Scholar] [CrossRef]
- Camacho-Cardenosa, A.; Brazo-Sayavera, J.; Camacho-Cardenosa, M.; Marcos-Serrano, M.; Timón, R.; Olcina, G. Effects of High Intensity Interval Training on Fat Mass Parameters in Adolescents. Efectividad de un protocolo de entrenamiento interválico de alta intensidad en adolescentes sobre masa grasa corporal. Rev. Española Salud Pública 2016, 90, e1–e9. [Google Scholar]
- Bonney, E.; Ferguson, G.; Smits-Engelsman, B. Relationship between Body Mass Index, Cardiorespiratory and Musculoskeletal Fitness among South African Adolescent Girls. Int. J. Environ. Res. Public Health 2018, 15, 1087. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, P.-L.; Chen, M.-L.; Huang, C.-M.; Chen, W.-C.; Li, C.-H.; Chang, L.-C. Physical Activity, Body Mass Index, and Cardiorespiratory Fitness among School Children in Taiwan: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2014, 11, 7275–7285. [Google Scholar] [CrossRef] [Green Version]
- Saygin, O.; Zorba, E.; Karacabey, K.; Mengutay, S. Gender and Maturation Differences in Health-Related Physical Fitness and Physical Activity in Turkish Children. Pak. J. Biol. Sci. 2007, 10, 1963–1969. [Google Scholar] [CrossRef]
- Ouerghi, N.; Ben Fradj, M.K.; Bezrati, I.; Khammassi, M.; Feki, M.; Kaabachi, N.; Bouassida, A. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men. Biol. Sport 2017, 34, 385–392. [Google Scholar] [CrossRef]
- Lambrick, D.; Westrupp, N.; Kaufmann, S.; Stoner, L.; Faulkner, J. The effectiveness of a high-intensity games intervention on improving indices of health in young children. J. Sports Sci. 2015, 34, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Coelho-E-Silva, M.J.; Vaz Ronque, E.R.; Cyrino, E.S.; Fernandes, R.A.; Valente-Dos-Santos, J.; Machado-Rodrigues, A.; Martins, R.; Figueiredo, A.J.; Santos, R.; Malina, R.M. Nutritional status, biological maturation and cardiorespiratory fitness in Azorean youth aged 11–15 years. BMC Public Health 2013, 13, 495. [Google Scholar] [CrossRef] [Green Version]
- Mota, J.; Guerra, S.; Leandro, C.; Teixeira-Pinto, A. Association of maturation, sex, and body fat in cardiorespiratory fitness. Am. J. Hum. Biol. 2002, 14, 707–712. [Google Scholar] [CrossRef]
Factor | Boys | Girls | ||
---|---|---|---|---|
Experimental | Control | Experimental | Control | |
Mean (±sd) 95% CI | Mean (±sd) 95% CI | Mean (±sd) 95% CI | Mean (±sd) 95% CI | |
APHV | 13.81 (0.46) 13.64–13.98 | 13.91 (0.41) 13.72–14.09 | 12.58 (0.50) 12.43–12.74 | 12.67 (0.50) 12.52–12.81 |
MO | 2.40 (0.40) 2.25–2.55 | 2.37 (0.53) 2.13–2.61 | 3.54 (0.57) 3.37–3.72 | 3.45 (0.58) 3.28–3.62 |
Body Height | 176.47 (6.21) 174.19–178.74 | 177.13 (5.98) 174.41–179.86 | 164.89 (6.08) 163.00–166.79 | 163.92 (6.96) 161.88–165.97 |
Body Weight | 64.06 (11.89) 59.70–68.42 | 65.69 (10.89) 60.74–70.65 | 56.08 (7.48) 53.75–58.41 | 57.27 (12.23) 53.68–60.86 |
FMI | 3.51 (2.44) 2.62–4.41 | 3.24 (2.10) 2.29–4.20 | 5.55 (1.39) 5.11–5.98 | 6.30 (2.60) 5.54–7.06 |
FI | 44.59 (3.50) 43.30–45.87 | 43.79 (3.32) 42.28–45.30 | 43.43 (4.62) 41.99–44.87 | 44.60 (3.96) 43.44–45.76 |
ΔFI | 3.01 (4.22) 1.46–4.56 | 0.36 (3.25) −1.12–1.84 | 1.88 (4.04) 0.62–3.14 | 0.34 (3.19) −0.59–1.28 |
95% Confidence Intervals | ||||||||
---|---|---|---|---|---|---|---|---|
DV | Predictor | Estimate | SE | Lower | Upper | β | z | p |
direct effect | ||||||||
ΔFI | APHV | −1.361 | 0.644 | −2.623 | −0.098 | −0.270 | −2.112 | 0.035 |
ΔFI | HIIT | 1.878 | 0.614 | 0.675 | 3.080 | 0.246 | 3.060 | 0.002 |
ΔFI | Sex | 2.722 | 1.066 | 0.633 | 4.812 | 0.344 | 2.553 | 0.011 |
ΔFI | FMIbaseline | 0.165 | 0.142 | −0.113 | 0.443 | 0.107 | 1.164 | 0.244 |
FMIbaseline | APHV | −0.287 | 0.387 | −1.046 | 0.472 | −0.087 | −0.741 | 0.459 |
FMIbaseline | Sex | −2.188 | 0.607 | −3.378 | −0.998 | −0.425 | −3.604 | <0.001 |
indirect effect | ||||||||
APHV ⇒ FMIbaseline ⇒ ΔFI | −0.047 | 0.076 | −0.196 | 0.101 | −0.009 | −0.625 | 0.532 | |
Sex ⇒ FMIbaseline ⇒ ΔFI | −0.361 | 0.326 | −1.000 | 0.278 | −0.046 | −1.108 | 0.268 |
95% Confidence Intervals | ||||||||
---|---|---|---|---|---|---|---|---|
DV | Predictor | Estimate | SE | Lower | Upper | β | z | p |
boys | ||||||||
direct effect | ||||||||
ΔFI | APHV | −1.233 | 1.216 | −3.617 | 1.151 | −0.1345 | −1.014 | 0.311 |
ΔFI | HIIT | 2.552 | 1.075 | 0.444 | 4.660 | 0.3126 | 2.373 | 0.018 |
ΔFI | FMIbaseline | −0.077 | 0.234 | −0.535 | 0.381 | −0.0435 | −0.330 | 0.742 |
FMIbaseline | APHV | −0.570 | 0.722 | −1.986 | 0.846 | −0.1099 | −0.789 | 0.430 |
indirect effect | ||||||||
HIIT ⇒ FMIbaseline ⇒ ΔFI | 0.044 | 0.144 | −0.239 | 0.327 | 0.005 | 0.304 | 0.761 | |
girls | ||||||||
direct effect | ||||||||
ΔFI | APHV | −1.443 | 0.746 | −2.905 | 0.019 | −0.193 | −1.934 | 0.053 |
ΔFI | HIIT | 1.644 | 0.737 | 0.201 | 3.088 | 0.223 | 2.232 | 0.026 |
ΔFI | FMIbaseline | 0.312 | 0.184 | −0.050 | 0.673 | 0.174 | 1.690 | 0.091 |
FMIbaseline | APHV | −0.157 | 0.452 | −1.043 | 0.729 | −0.038 | −0.347 | 0.728 |
indirect effect | ||||||||
HIIT ⇒ FMIbaseline ⇒ΔFI | −0.049 | 0.144 | −0.331 | 0.233 | −0.007 | −0.340 | 0.734 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, J.; Koźlenia, D.; Popowczak, M. The Relative Importance of Age at Peak Height Velocity and Fat Mass Index in High-Intensity Interval Training Effect on Cardiorespiratory Fitness in Adolescents: A Randomized Controlled Trial. Children 2022, 9, 1554. https://doi.org/10.3390/children9101554
Domaradzki J, Koźlenia D, Popowczak M. The Relative Importance of Age at Peak Height Velocity and Fat Mass Index in High-Intensity Interval Training Effect on Cardiorespiratory Fitness in Adolescents: A Randomized Controlled Trial. Children. 2022; 9(10):1554. https://doi.org/10.3390/children9101554
Chicago/Turabian StyleDomaradzki, Jarosław, Dawid Koźlenia, and Marek Popowczak. 2022. "The Relative Importance of Age at Peak Height Velocity and Fat Mass Index in High-Intensity Interval Training Effect on Cardiorespiratory Fitness in Adolescents: A Randomized Controlled Trial" Children 9, no. 10: 1554. https://doi.org/10.3390/children9101554
APA StyleDomaradzki, J., Koźlenia, D., & Popowczak, M. (2022). The Relative Importance of Age at Peak Height Velocity and Fat Mass Index in High-Intensity Interval Training Effect on Cardiorespiratory Fitness in Adolescents: A Randomized Controlled Trial. Children, 9(10), 1554. https://doi.org/10.3390/children9101554