Is Rituximab-Associated Hypogammaglobulinemia Always Linked to B-Cell Depletion?
Abstract
:1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Michel, M. Classification and therapeutic approaches in autoimmune hemolytic anemia: An update. Expert Rev. Hematol. 2011, 4, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Kalfa, T.A. Warm antibody autoimmune hemolytic anemia. Hematology 2016, 2016, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Zecca, M.; Nobili, B.; Ramenghi, U.; Perrotta, S.; Amendola, G.; Rosito, P.; Jankovic, M.; Pierani, P.; De Stefano, P.; Bonora, M.R.; et al. Rituximab for the treatment of refractory autoimmune hemolytic anemia in children. Blood 2003, 101, 3857–3861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quartier, P.; Brethon, B.; Philippet, P.; Landman-Parker, J.; Le Deist, F.; Fischer, A. Treatment of childhood autoimmune haemolytic anaemia with rituximab. Lancet 2001, 358, 1511–1513. [Google Scholar] [CrossRef]
- Packman, C.H. The Clinical Pictures of Autoimmune Hemolytic Anemia. Transfus. Med. Hemotherapy 2015, 42, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Reff, M.E.; Carner, K.; Chambers, S.; Chinn, P.C.; Leonard, J.E.; Raab, R.; Newman, R.A.; Hanna, N.; Anderson, D.R. Depletion of B-cells in vivo by a chimeric mouse monoclonal antibody to CD20. Blood 1994, 83, 435–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader-Meunier, B.; Aladjidi, N.; Bellmann, F.; Monpoux, F.; Nelken, B.; Robert, A.; Armari-Alla, C.; Picard, C.; Ledeist, F.; Munzer, M.; et al. Rituximab therapy for childhood Evans syndrome. Haematologica 2007, 92, 1691–1694. [Google Scholar] [CrossRef] [Green Version]
- El-Hallak, M.; Binstadt, B.A.; Leichtner, A.M.; Bennett, C.M.; Neufeld, E.J.; Fuhlbrigge, R.C.; Zurakowski, D.; Sundel, R.P. Clinical effects and safety of rituximab for treatment of refractory pediatric autoimmune diseases. J. Pediatr. 2007, 150, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Adeli, M.M.G.; Eichner, B.H.; Thornburg, C.; Williams, L. Persistent antibody depletion after rituximab in three children with autoimmune cytopenias. Pediatr. Hematol. Oncol. 2009, 26, 566–572. [Google Scholar] [CrossRef]
- Svahn, J.; Fioredda, F.; Calvillo, M.; Molinari, A.C.; Micalizzi, C.; Banov, L.; Schmidt, M.; Caprino, D.; Marinelli, D.; Gallisai, D.; et al. Rituximab-based immunosuppression for autoimmune haemolytic anaemia in infants. Br. J. Haematol. 2009, 145, 96–100. [Google Scholar] [CrossRef]
- Labrosse, R.; Barmettler, S.; Derfalvi, B.; Blincoe, A.; Cros, G.; Lacombe-Barrios, J.; Barsalou, J.; Yang, N.; Alrumayyan, N.; Sinclair, J.; et al. Rituximab-induced hypogammaglobulinemia and infection risk in pediatric patients. J. Allergy Clin. Immunol. 2021, 148, 523–532.e8. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.K.; Price, S.; Perkins, K.; Aldridge, P.; Tretler, J.; Davis, J.; Dale, J.K.; Gill, F.; Hartman, K.R.; Stork, L.C.; et al. Use of Rituximab for Refractory Cytopenias Associated With Autoimmune Lymphoproliferative Syndrome (ALPS). Pediatric Blood Cancer 2009, 52, 847–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barmettler, S.; Mei-Sing, O.; Farmer, J.R.; Choi, H.; Walter, J. Association of Immunoglobulin Levels, Infectious Risk, and Mortality With Rituximab and Hypogammaglobulinemia. JAMA Netw. Open 2018, 1, e184169. [Google Scholar] [CrossRef]
- Bucciol, G.; Moens, L.; Bosch, B.; Bossuyt, X.; Casanova, J.-L.; Puel, A.; Meyts, I. Lessons learned from the study of human inborn errors of innate immunity. J. Allergy Clin. Immunol. 2019, 143, 507–527. [Google Scholar] [CrossRef]
- Khojah, A.M.; Miller, M.L.; Klein-Gitelman, M.S.; Curran, M.L.; Hans, V.; Pachman, L.M.; Fuleihan, R.L. Rituximab-associated Hypogammaglobulinemia in pediatric patients with autoimmune diseases. Pediatric Rheumatol. 2019, 17, 1–7. [Google Scholar] [CrossRef]
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A. Human Inborn Errors of Immunity: 2019 Update on the Classification form the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2020, 40, 66–81. [Google Scholar]
- Biakci, Z.; Bozkurt, H.B.; Olcay, L. Three Cases of Autoimmune Hemolytic Anemia following Primary Varicella Infection and Vaccination: Possible Pathogenesis in the Context of Current Information. Ann. Hematol. Oncol. 2019, 6, 1250. [Google Scholar]
- Cunningham-Rundles, C. Hematologic complications of primary immune deficiencies. Blood Rev. 2002, 16, 61–64. [Google Scholar] [CrossRef]
- Ottaviano, G.; Marinoni, M.; Graziani, S.; Sibson, K.; Barzaghi, F.; Bertolini, P.; Chini, L.; Corti, P.; Cancrini, C.; D’Alba, I.; et al. Rituximab Unveils Hypogammaglobulinemia and Immunodeficiency in Children with Autoimmune Cytopenia. J. Allergy Clin. Immunol. Pract. 2020, 8, 273–282. [Google Scholar] [CrossRef]
- Karaca, N.E.; Karadeniz, C.; Aksu, G.; Kutukculer, N. Clinical and laboratory evaluation of periodically monitored Turkish children with IgG subclass deficiencies. Asian Pac. J. Allergy Immunol. 2009, 27, 43–48. [Google Scholar]
- Wahn, V.; Von Bernuth, H. IgG subclass deficiencies in children: Facts and fiction. Pediatr. Allergy Immunol. 2017, 28, 521–524. [Google Scholar] [CrossRef] [PubMed]
- McMillan, R.; Longmire, R.; Yelenosky, R. The Effect of Corticosteroids on Human IgG Synthesis. J. Immunol. 1976, 116, 1592–1595. [Google Scholar] [PubMed]
- Siegrist, C.-A. Vaccine Immunology. In Plotkin’s Vaccines; Elsevier: Amsterdam, The Netherlands, 2018; pp. 16–34.e7. [Google Scholar] [CrossRef]
Age: 10 Months Old | Age: 33 Months Old | |
---|---|---|
RITUXIMAB | ||
6 months before RITUXIMAB therapy | 16 months after RITUXIMAB therapy | |
Current therapy | ||
Immunophenotype of T & B cells in the peripheral blood | Oral steroid therapy for 3 months 1 | None 2 |
Lymphocytes/µl | 3997 (2600–10,400) | 5821 (1700–6900) |
CD3+ (% on Lymphs) | 63.8% (54–76) | 68% (43–76) |
CD3+/µl | 2549 (1600–6700) | 3958 (900–4500) |
CD3+ CD4+ T helper% lymphs | 43.1% (31–54) | 39.8% (23–48) |
CD3+ CD4+/µl | 1724 (1000–4600) | 2320 (500–2400) |
CD3+ CD8+ T cytotoxic% lymphs | 19.6% (12–28) | 23.2% (14–33) |
CD3+ CD8+/µl | 781 (400–2100) | 1348 (300–1600) |
CD3+ CD4+/CD3+ CD8+ | 2.2 (1.3–3.9) | 1.7 (0.9–2.9) |
CD19+ Bcells% lymphs | 21.4% (15–39) | 22.5% (14–44) |
CD19+ Bcells/µl | 837 (600–2700) | 1557 (200–2100) |
CD19+ CD20+ mature B on lymphs | 19.7% | 22.2% |
CD19+ CD20+/µl | 771 | 1537 |
CD3-CD16/56+ NKcells% on lymphs | 16% (3–17) | 8.6% (4–23) |
CD3-CD16/56+ NKcells/µl | 608 (200–1200) | 602 (100–1400) |
CD3+ HLADR+ Activated T% on CD3 | 1.7% (2–8) | 2% (1.5–7) |
CD3+ TCR γδ+% on CD3+ | 1.4% (2–15) | 8.1% (4–25) |
CD4+ CD45RA+ naive on CD4+ | 86.2% (64–93) | 80.8% (53–86) |
CD27- naive% on B cells | 76.5% (74.7–90.5) | 90.9% (77–90) |
IgD+ CD27+% on B cells | 11.5% (4.9–14.2) | 5.5% (5–14) |
IgD-CD27+% on B cells | 9.2% (2.9–2.2) | 3.5% (3–8) |
CD21lowCD38-% on B cells | 4.5% (<10) | 5.2% (<10) |
Immunoglobulin levels (mg/dl) | ||
IgG | 688 (316–1148) | 11 (708–1622) |
IgM | 37 (47–204) | 27 (69–251) |
IgA | 60 (13–69) | 90 (32–245) |
GENE | VARIANT | ZYGOSITY | VARIANT CLASSIFICATION |
---|---|---|---|
C6 | c.820C > A (p.Gln274Lys) | Heterozygous | Uncertain Significance |
CIITA | c.2320C > T (p.Leu774Phe) | Heterozygous | Uncertain Significance |
COL7A1 | c.2858-3C > T (Intronic) | Heterozygous | Uncertain Significance |
TERT | c.2573G > A (p.Arg858Gln) | Heterozygous | Uncertain Significance |
TP63 | c.1537G > C (p.Ala513Pro) | Heterozygous | Uncertain Significance |
WDR1 | c.512C > T (p.Ala171Val) | Heterozygous | Uncertain Significance |
ZCCHC8 | c.1652G > A (p.Gly551Asp) | Heterozygous | Uncertain Significance |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damianaki, A.; Tzanoudaki, M.; Kanariou, M.; Liatsis, E.; Panos, A.; Soldatou, A.; Kossiva, L. Is Rituximab-Associated Hypogammaglobulinemia Always Linked to B-Cell Depletion? Children 2022, 9, 295. https://doi.org/10.3390/children9020295
Damianaki A, Tzanoudaki M, Kanariou M, Liatsis E, Panos A, Soldatou A, Kossiva L. Is Rituximab-Associated Hypogammaglobulinemia Always Linked to B-Cell Depletion? Children. 2022; 9(2):295. https://doi.org/10.3390/children9020295
Chicago/Turabian StyleDamianaki, Anthie, Marianna Tzanoudaki, Maria Kanariou, Emmanouil Liatsis, Alexandros Panos, Alexandra Soldatou, and Lydia Kossiva. 2022. "Is Rituximab-Associated Hypogammaglobulinemia Always Linked to B-Cell Depletion?" Children 9, no. 2: 295. https://doi.org/10.3390/children9020295
APA StyleDamianaki, A., Tzanoudaki, M., Kanariou, M., Liatsis, E., Panos, A., Soldatou, A., & Kossiva, L. (2022). Is Rituximab-Associated Hypogammaglobulinemia Always Linked to B-Cell Depletion? Children, 9(2), 295. https://doi.org/10.3390/children9020295