Executive Function Improvement for Children with Autism Spectrum Disorder: A Comparative Study between Virtual Training and Physical Exercise Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Participants
2.3. Participant Characteristics
2.4. Study Methodology
2.5. Production and Presentation of Executive Function Test Materials
2.6. Statistical Analysis
3. Results
3.1. The Impact of Different Training Methods on Executive Function of Children with ASD
3.1.1. The Impact of Different Training Methods on the Working Memory of Children with ASD
3.1.2. The Impact of Different Training Methods on the Inhibition of Children with ASD
3.1.3. The Impact of Different Training Methods on the Flexibility of Children with ASD
3.1.4. Analysis on the Improvement of Executive Function of Children with ASD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Portnova, G.V.; Maslennikova, A.V. Atypical eeg responses to nonverbal emotionally charged stimuli in children with ASD. Behav. Neurol. 2020, 2020, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, A. Executive Functions in Handbook of Clinical Neurology; Gallagher, A., Cohen, C.B.D., Eds.; Elseveir: Amsterdam, The Netherland, 2020; pp. 225–240. [Google Scholar]
- Sudo, M.; Komiyama, T.; Aoyagi, R.; Nagamatsu, T.; Higaki, Y.; Ando, S. Executive function after exhaustive exercise. Eur. J. Appl. Physiol. 2017, 117, 2029–2038. [Google Scholar] [CrossRef] [PubMed]
- Clarys, D.; Bugaiska, A.; Tapia, G.; Baudouin, A. Ageing, remembering, and executive function. Memory 2009, 17, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Prieto, M.; Moreira, C.; Cruz, S.; Campos, V.; Martinez-Regueiro, R.; Taboada, M.; Carracedo, A.; Sampaio, A. Executive functioning: A mediator between sensory processing and behaviour in autism spectrum disorder. J. Autism Dev. Disord. 2021, 51, 2091–2103. [Google Scholar] [CrossRef]
- Faja, S.; Clarkson, T.; Gilbert, R.; Vaidyanathan, A.; Greco, G.; Rueda, M.R.; Combita, L.M.; Driscoll, K. A preliminary randomized, controlled trial of executive function training for children with autism spectrum disorder. Autism 2021, 26, 346–360. [Google Scholar] [CrossRef]
- Hill, E.L. Executive dysfunction in autism. Trends Cogn. Sci. 2004, 8, 26–32. [Google Scholar] [CrossRef] [Green Version]
- May, K.E.; Kana, R.K. Frontoparietal network in executive functioning in autism spectrum disorder. Autism Res. 2020, 13, 1762–1777. [Google Scholar] [CrossRef]
- Gisbert Gustemps, L.; Lugo Marin, J.; Setien Ramos, I.; Ibanez Jimenez, P.; Romero Santo-Tomas, O.; Jurado Luque, M.J.; Ballester Navarro, P.; Esteve Cruella, A.; Diez Villoria, E.; Canal Bedia, R.; et al. Sleep disturbances in autism spectrum disorder without intellectual impairment: Relationship with executive function and psychiatric symptoms. Sleep Med. 2021, 83, 106–114. [Google Scholar] [CrossRef]
- Patrick, K.E.; Schultheis, M.T.; Agate, F.T.; McCurdy, M.D.; Daly, B.P.; Tarazi, R.A.; Chute, D.L.; Hurewitz, F. Executive function "drives" differences in simulated driving performance between young adults with and without autism spectrum disorder. Child Neuropsychol. 2020, 26, 649–665. [Google Scholar] [CrossRef]
- Tes, A.; Anderson, D.; Liu, V.; Tsui, S. Improving executive function of children with autism spectrum disorder through cycling skill acquisition. Med. Sci. Sport Exer. 2021, 53, 1417–1424. [Google Scholar]
- Wang, J.; Cai, K.; Liu, Z.; Herold, F.; Zou, L.; Zhu, L.; Xiong, X.; Chen, A. Effects of mini-basketball training program on executive functions and core symptoms among preschool children with autism spectrum disorders. Brain Sci. 2020, 10, 263. [Google Scholar] [CrossRef] [PubMed]
- Macoun, S.J.; Schneider, I.; Bedir, B.; Sheehan, J.; Sung, A. Pilot study of an attention and executive function cognitive intervention in children with autism spectrum disorders. J. Autism Dev. Disord. 2021, 51, 2600–2610. [Google Scholar] [CrossRef] [PubMed]
- Varigonda, A.L.; Edgcomb, J.B.; Zima, B.T. The impact of exercise in improving executive function impairments among children and adolescents with adhd, autism spectrum disorder, and fetal alcohol spectrum disorder: A systematic review and meta-analysis. Arch. Clin. Psychiat. 2020, 47, 146–156. [Google Scholar] [CrossRef]
- Liang, X.; Li, R.; Wong, S.H.S.; Sum, R.K.W.; Wang, P.; Yang, B.; Sit, C.H.P. The effects of exercise interventions on executive functions in children and adolescents with autism spectrum disorder: A systematic review and meta-analysis. Sports Med. 2021, 52, 75–88. [Google Scholar] [CrossRef] [PubMed]
- McCord, A.; Cocks, B.; Barreiros, A.R.; Bizo, L.A. Short video game play improves executive function in the oldest old living in residential care. Comput. Hum. Behav. 2020, 108, 106337. [Google Scholar] [CrossRef]
- Huang, K. Exergaming executive functions: An immersive virtual reality-based cognitive training for adults aged 50 and older. Cyberpsych. Beh. Soc. N. 2020, 23, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.E.; Parong, J.; Bainbridge, K. Young adults learning executive function skills by playing focused video games. Cogn. Dev. 2019, 49, 43–50. [Google Scholar] [CrossRef]
- Parong, J.; Mayer, R.E.; Fiorella, L.; MacNamara, A.; Homer, B.D.; Plass, J.L. Learning executive function skills by playing focused video games. Contemp. Educ. Psychol. 2017, 51, 141–151. [Google Scholar] [CrossRef]
- Escolano-Perez, E.; Acero-Ferrero, M.; Luisa Herrero-Nivela, M. Improvement of planning skills in children with autism spectrum disorder after an educational intervention: A study from a mixed methods approach. Front. Psychol. 2019, 10, 1–18. [Google Scholar] [CrossRef]
- Schopler, E.; Van Bourgondien, M.E.; Wellman, G.J.; Love, S.R. Childhood Autism Rating Scale, 2nd ed.; Western Psychological Services: Los Angeles, CA, USA, 2010. [Google Scholar]
- Henriksson, M.; Wall, A.; Nyberg, J.; Adiels, M.; Lundin, K.; Bergh, Y.; Eggertsen, R.; Danielsson, L.; Kuhn, H.G.; Westerlund, M.; et al. Effects of exercise on symptoms of anxiety in primary care patients: A randomized controlled trial. J. Affect. Disord. 2022, 297, 26–34. [Google Scholar] [CrossRef]
- Volker, M.A.; Guarnaccia, V.; Scardapane, J.R. Short forms of the stanford-binet intelligence scale: Fourth edition for screening potentially gifted preschoolers. J. Psychoeduc. Assess. 1999, 17, 226–235. [Google Scholar] [CrossRef]
- Tse, C.Y.A.; Lee, H.P.; Chan, K.S.K.; Edgar, V.B.; Wilkinson-Smith, A.; Lai, W.H.E. Examining the impact of physical activity on sleep quality and executive functions in children with autism spectrum disorder: A randomized controlled trial. Autism 2019, 23, 1699–1710. [Google Scholar] [PubMed]
- Best, J.R. Exergaming immediately enhances children’s executive function. Dev. Psychol. 2012, 48, 1501–1510. [Google Scholar] [PubMed]
- Zhu, Y.; Sun, F.; Chiu, M.M.; Siu, A.Y. Effects of high-intensity interval exercise and moderate-intensity continuous exercise on executive function of healthy young males. Physiol. Behav. 2021, 239, 113505. [Google Scholar] [PubMed]
- Chen, T.; Yue, G.H.; Tian, Y.; Jiang, C. Baduanjin mind-body intervention improves the executive control function. Front. Psychol. 2017, 7, 2015. [Google Scholar]
- Cai, L.; Zhu, X.; Yi, J.; Bai, M.; Wang, M.; Wang, Y.; Hu, M.; Yao, S. Neurological soft signs and their relationship with measures of executive function in chinese adolescents. J. Dev. Behav. Pediatr. 2013, 34, 197–203. [Google Scholar]
- Scarpina, F.; Tagini, S. The stroop color and word test. Front. Psychol. 2017, 8, 557. [Google Scholar]
- Jensen GD, W.M. Operant conditioning techniques applied in the treatment of an autistic child. Am. J. Orthopsychiatry 1967, 31, 30–40. [Google Scholar]
- Xue, Y.; Yang, Y.; Huang, T. Effects of chronic exercise interventions on executive function among children and adolescents: A systematic review with meta-analysis. Brit. J. Sports Med. 2019, 53, 1397–1404. [Google Scholar]
- Moreau, D.; Chou, E. The acute effect of high-intensity exercise on executive function: A meta-analysis. Perspect. Psychol. Sci. 2019, 14, 734–764. [Google Scholar]
- Liu, S.; Yu, Q.; Li, Z.; Cunha, P.M.; Zhang, Y.; Kong, Z.; Lin, W.; Chen, S.; Cai, Y. Effects of acute and chronic exercises on executive function in children and adolescents: A systemic review and meta-analysis. Front. Psychol. 2020, 11, 3482. [Google Scholar] [CrossRef] [PubMed]
- Verburgh, L.; Konigs, M.; Scherder, E.J.A.; Oosterlaan, J. Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Brit. J. Sports Med. 2014, 48, 973–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Ayed, I.; Castor-Guyonvarch, N.; Amimour, S.; Naija, S.; Aouichaoui, C.; Ben Omor, S.; Tabka, Z.; El Massioui, F. Acute exercise and cognitive function in alzheimer’s disease. J. Alzheimers Dis. 2021, 82, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Srinivas, N.S.; Vimalan, V.; Padmanabhan, P.; Gulyas, B. An overview on cognitive function enhancement through physical exercises. Brain Sci. 2021, 11, 1289. [Google Scholar] [CrossRef]
- De Asteasu, M.L.S.; Martinez-Velilla, N.; Zambom-Ferraresi, F.; Ramirez-Velez, R.; Garcia-Hermoso, A.; Izquierdo, M. Cognitive function improvements mediate exercise intervention effects on physical performance in acutely hospitalized older adults. J. Am. Med. Dir. Assoc. 2021, 22, 787–791. [Google Scholar] [CrossRef]
- Milajerdi, H.R.; Sheikh, M.; Najafabadi, M.G.; Saghaei, B.; Naghdi, N.; Dewey, D. The effects of physical activity and exergaming on motor skills and executive functions in children with autism spectrum disorder. Games Health J. 2021, 10, 33–42. [Google Scholar] [CrossRef]
- Eliav, R.; Rand, D.; Schwartz, Y.; Blumenfeld, B.; Stark-Inbar, A.; Maoz, S.; Preminger, S.; Sacher, Y. Training with adaptive body-controlled virtual reality following acquired brain injury for improving executive functions. Brain Inj. 2017, 31, 857–858. [Google Scholar]
- Chicchi Giglioli, I.A.; Mussoni, S.; Cipresso, P.; Marin-Morales, J.; Riva, G.; Alcaniz, M. Pilot study on effectiveness of a virtual game training on executive functions. In Proceedings of the 2021 IEEE Global Engineering Education Conference (Educon), Vienna, Austria, 21–23 April 2021; pp. 956–960. [Google Scholar]
- Jacoby, M.; Averbuch, S.; Sacher, Y.; Katz, N.; Weiss, P.L.; Kizony, R. Effectiveness of executive functions training within a virtual supermarket for adults with traumatic brain injury: A pilot study. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 182–190. [Google Scholar] [CrossRef]
- Wang, R.; Huang, Y.; Zhou, J.; Cheng, S.; Yang, Y. Effects of exergame-based dual-task training on executive function and dual-task performance in community-dwelling older people: A randomized-controlled trial. Games Health J. 2021, 10, 347–354. [Google Scholar] [CrossRef]
- Yang, X.; Wang, Z.; Qiu, X.; Zhu, L. The relation between electronic game play and executive function among preschoolers. J. Child Fam. Stud. 2020, 29, 2868–2878. [Google Scholar] [CrossRef]
- Johnson, M.R.; Luo, Y. Gaming-value and culture-value: Understanding how players account for video game purchases. Convergence 2019, 25, 868–883. [Google Scholar] [CrossRef]
- Silva, T.; Marinho, E.; Cabral, G.; Gama, K. Motivational impact of virtual reality on game-based learning: Comparative study of immersive and non-immersive approaches. In Proceedings of the 2017 19th Symposium on Virtual and Augmented Reality (SVR), Curitiba, Brazil, 1–4 November 2017; pp. 155–158. [Google Scholar]
- Reycraft, J.T.; Islam, H.; Townsend, L.K.; Hayward, G.C.; Hazell, T.J.; MacPherson, R.E.K. Exercise intensity and recovery on circulating brain-derived neurotrophic factor. Med. Sci. Sports Exer. 2020, 52, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Tian, X.; Zhang, M.; Lou, S. Treadmill exercise reverses the change of dendritic morphology and activates BNDF-mTOR signaling pathway in the hippocampus and cerebral cortex of ovariectomized mice. J. Mol. Neurosci. 2021, 71, 1849–1862. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Virtual Training Group | Physical Exercise Group | Control Group | p-Value |
---|---|---|---|---|
N | 34 | 33 | 33 | — |
Age (years) | 12.5 ± 2.36 | 13.1 ± 2.97 | 12.8 ± 2.69 | 0.511 |
Gender (boys/girls) | 20/14 | 17/16 | 18/15 | 0.833 |
Body height (cm) | 153.2 ± 10.51 | 157.8 ± 9.89 | 155.9 ± 9.73 | 0.103 |
Body mass (kg) | 52.8 ± 7.74 | 55.3 ± 6.83 | 52.3 ± 9.49 | 0.184 |
BMI (kg/m2) | 21.5 ± 2.65 | 22.4 ± 2.55 | 21.8 ± 2.76 | 0.209 |
CARS | 32.3 ± 2.98 | 32.5 ± 2.65 | 31.8 ± 3.32 | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, C.; Yang, J.; Lin, L.; Chen, S. Executive Function Improvement for Children with Autism Spectrum Disorder: A Comparative Study between Virtual Training and Physical Exercise Methods. Children 2022, 9, 507. https://doi.org/10.3390/children9040507
Ji C, Yang J, Lin L, Chen S. Executive Function Improvement for Children with Autism Spectrum Disorder: A Comparative Study between Virtual Training and Physical Exercise Methods. Children. 2022; 9(4):507. https://doi.org/10.3390/children9040507
Chicago/Turabian StyleJi, Chaoxin, Jun Yang, Lin Lin, and Song Chen. 2022. "Executive Function Improvement for Children with Autism Spectrum Disorder: A Comparative Study between Virtual Training and Physical Exercise Methods" Children 9, no. 4: 507. https://doi.org/10.3390/children9040507
APA StyleJi, C., Yang, J., Lin, L., & Chen, S. (2022). Executive Function Improvement for Children with Autism Spectrum Disorder: A Comparative Study between Virtual Training and Physical Exercise Methods. Children, 9(4), 507. https://doi.org/10.3390/children9040507