Infection-Triggered Hyperinflammatory Syndromes in Children
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravelli, A.; Grom, A.A.; Behrens, E.M.; Cron, R.Q. Macrophage activation syndrome as part of systemic juvenile idiopathic arthritis: Diagnosis, genetics, pathophysiology and treatment. Genes Immun. 2012, 13, 289–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravelli, A.; Daviì, S.; Minoia, F.; Martini, A.; Cron, R.Q. Macrophage activation syndrome. Hematol. Oncol. Clin. N. Am. 2015, 29, 927–941. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, A.; Magni-Manzoni, S.; Pistorio, A.; Besana, C.; Foti, T.; Ruperto, N.; Viola, S.; Martini, A. Preliminary diagnostic guidelines for macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. J. Pediatr. 2005, 146, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Ravelli, A.; Minoia, F.; Davì, S.; Horne, A.C.; Bovis, F.; Pistorio, A.; Aricò, M.; Avcin, T.; Behrens, E.M.; De Benedetti, F.; et al. 2016 Classification Criteria for Macrophage Activation Syndrome Complicating Systemic Juvenile Idiopathic Arthritis: A European League against Rheumatism/American College of Rheumatology/Paediatric Rheumatology International Trials Organisation Collaborative Initiative. Ann. Rheum. Dis. 2016, 75, 481–489. [Google Scholar] [PubMed]
- Davì, S.; Minoia, F.; Pistorio, A.; Horne, A.; Consolaro, A.; Rosina, S.; Bovis, F.; Cimaz, R.; Gamir, M.L.; Norman, T.; et al. Performance of current guidelines for diagnosis of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis. Arthritis Rheumatol. 2014, 66, 2871–2880. [Google Scholar] [CrossRef]
- Lenert, A.; Yao, Q. Macrophage activation syndrome complicating adult onset Still’s disease: A single center case series and comparison with literature. Semin. Arthritis Rheum. 2016, 45, 711–716. [Google Scholar] [CrossRef]
- Minoia, F.; Davì, S.; Horne, A.; Demirkaya, E.; Bovis, F.; Li, C.; Lehmberg, K.; Weitzman, S.; Insalaco, A.; Wouters, C.; et al. Clinical features, treatment, and outcome of macrophage activation syndrome complicating systemic juvenile idiopathic arthritis: A multinational, multicenter study of 362 patients. Arthritis Rheumatol. 2014, 66, 3160–3169. [Google Scholar] [CrossRef]
- Janka, G.; Imashuku, S.; Elinder, G.; Schneider, M.; Henter, J.I. Infection- and malignancy-associated hemophagocytic syndromes. Secondary hemophagocytic lymphohistiocytosis. Hematol. Oncol. Clin. N. Am. 1998, 12, 435–444. [Google Scholar] [CrossRef]
- Daccò, V.; Rosazza, C.; Malfitano, A.; Sciarrabba, C.S.; Minoia, F.; Filocamo, G.; Colombo, C. Cytokine storm syndrome in a young patient with cystic fibrosis. Pediatr Pulmonol. Pediatr. Pulmonol. 2021, 56, 3435–3437. [Google Scholar] [CrossRef]
- Schulert, G.S.; Zhang, M.; Fall, N.; Husami, A.; Kissell, D.; Hanosh, A.; Zhang, K.; Davis, K.; Jentzen, J.M.; Napolitano, L.; et al. Whole-exome sequencing reveals mu tations in genes linked to hemophagocytic lymphohistiocytosis and macrophage activation syndrome in fatal cases of H1N1 influenza. J. Infect Dis. 2016, 213, 1180. [Google Scholar] [CrossRef]
- Buoncompagni, A.; Loy, A.; Sala, I.; Ravelli, A. The paradox of macrophage activation syndrome triggered by biologic medications. Pediatr. Rhematol. Online J. 2005, 3, 70–73. [Google Scholar]
- Ramanan, A.V.; Schneider, R. Macrophage activation syndrome following initiation of etanercept in a child with systemic onset juvenile rheumatoid arthritis. J. Rheumatol. 2003, 30, 401–403. [Google Scholar] [PubMed]
- Lurati, A.; Teruzzi, B.; Salmaso, A.; Demarco, G.; Pontikaki, I.; Gattinara, M.; Fantini, F. Macrophage activation syndrome (MAS) during anti-IL1 therapy (anakinra) in a patient affected by systemic juvenile arthritis (soJIA): A report and review of the literature. Pediatr. Rheumatol. Online J. 2005, 3, 79–85. [Google Scholar]
- Parodi, A.; Davì, S.; Pringe, A.B.; Pistorio, A.; Ruperto, N.; Manzoni, S.M.; Miettunen, P.; Bader-Meunier, B.; Espada, G.; Sterba, G.; et al. Macrophage activation syndrome in juvenile systemic lupus erythematosus: A multinational multicenter study of thirty-eight patients. Arthritis Rheum. 2009, 60, 3388–3399. [Google Scholar] [CrossRef] [PubMed]
- Poddighe, D.; Dauyey, K. Macrophage activation syndrome in juvenile dermatomyositis: A systematic review. Rheumatol. Int. 2020, 40, 695–702. [Google Scholar] [CrossRef]
- Filocamo, G.; Petaccia, A.; Torcoletti, M.; Sieni, E.; Ravelli, A.; Corona, F. Recurrent macrophage activation syndrome in spondyloarthritis and monoallelic missense mutations in PRF1: A description of one paediatric case. Clin. Exp. Rheumatol. 2016, 34, 719. [Google Scholar]
- Schulert, G.S.; Grom, A.A. Macrophage activation syndrome and cytokine-directed therapies. Best Pract. Res. Clin. Rheumatol. 2014, 28, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Hadchouel, M.; Prieur, A.M.; Griscelli, C. Acute hemorrhagic, hepatic and neurologic manifestations in juvenile rheumatoid arthritis: Possible relationship to drugs or infection. J. Pediatr. 1985, 106, 561–566. [Google Scholar] [CrossRef]
- Sawhney, S.; Woo, P.; Murray, K.J. Macrophage activation syndrome: A potentially fatal complication of rheumatic disorders. Arch. Dis. Child. 2001, 85, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Janka, G.E. Familial and acquired hemophagocytic lymphohistiocytosis. Eur. J. Pediatr. 2007, 166, 95–109. [Google Scholar] [CrossRef]
- Grom, A.A.; Horne, A.; De Benedetti, F. Macrophage activation syndrome in the era of biologic therapy. Nat. Rev. Rheumatol. 2016, 12, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Canna, S.W.; Behrens, E.M. Making sense of the cytokine storm: A conceptual framework for understanding, diagnosing, and treating hemophagocytic syndromes. Pediatr. Clin. N. Am. 2012, 59, 329–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulert, G.S.; Canna, S.W. Convergent pathways of the hyperferritinemic syndromes. Int. Immunol. 2018, 30, 195–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canna, S.W.; Cron, R.Q. Highways to hell: Mechanism-based management of cytokine storm syn-dromes. J. Allergy Clin. Immunol. 2020, 146, 949–959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Behrens, E.M.; Atkinson, T.P.; Shakoory, B.; Grom, A.A.; Cron, R.Q. Genetic defects in cytolysis in macrophage activation syndrome. Curr. Rheumatol. Rep. 2014, 16, 439. [Google Scholar] [CrossRef]
- Weaver, L.K.; Behrens, E.M. Hyperinflammation, rather than hemophagocytosis, is the common link between macrophage activation syndrome and hemophagocytic lymphohistiocytosis. Curr. Opin. Rheumatol. 2014, 26, 562–569. [Google Scholar] [CrossRef]
- Grom, A.A.; Villanueva, J.; Lee, S.; Goldmuntz, E.A.; Passo, M.H.; Filipovich, A. Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid ar- thritis and macrophage activation syndrome. J. Pediatr. 2003, 142, 292–296. [Google Scholar] [CrossRef]
- Put, K.; Vandenhaute, J.; Avau, A.; Van Nieuwenhuijze, A.; Brisse, E.; Dierckx, T.; Rutgeerts, O.; Garcia-Perez, J.E.; Toelen, J.; Waer, M.; et al. Inflammatory gene expression profile and defective interferon-γ and granzyme K in natural killer cells from systemic juvenile idiopathic arthritis patients. Arthritis Rheumatol. 2017, 69, 213–224. [Google Scholar] [CrossRef]
- Cifaldi, L.; Prencipe, G.; Caiello, I.; Bracaglia, C.; Locatelli, F.; De Benedetti, F.; Strippoli, R. Inhibition of natural killer cell cytotoxicity by interleukin-6: Implications for the pathogenesis of macrophage activation syndrome. Arthritis Rheumatol. 2015, 67, 3037–3046. [Google Scholar] [CrossRef]
- Ombrello, M.J.; Schulert, G.S. COVID-19 and cytokine storm syndrome: Are there lessons from mac-rophage activation syndrome? Transl. Res. 2021, 232, 1–12. [Google Scholar] [CrossRef]
- Kaufman, K.M.; Linghu, B.; Szustakowski, J.D.; Husami, A.; Yang, F.; Zhang, K.; Filipovich, A.H.; Fall, N.; Harley, J.B.; Nirmala, N.R.; et al. Whole-exome sequencing reveals overlap between macrophage activation syndrome in systemic juvenile idiopathic arthritis and familial hemophagocytic lymphohistiocytosis. Arthritis Rheumatol. 2014, 66, 3486–3495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweyen, E.; Holzinger, D.; Weinhage, T.; Hinze, C.; Wittkowski, H.; Pickkers, P.; Albeituni, S.; Verbist, K.; Nichols, K.E.; Schulert, G.; et al. Synergistic Signaling of TLR and IFNα/β Facilitates Escape of IL-18 Expression from Endotoxin Tolerance. Am. J. Respir. Crit. Care Med. 2020, 201, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Brisse, E.; Wouters, C.H.; Andrei, G.; Matthys, P. How Viruses Contribute to the Pathogenesis of Hemophagocytic Lymphohistiocytosis. Front. Immunol. 2017, 8, 1102. [Google Scholar] [CrossRef] [PubMed]
Patient | Gender | Rheumatic Disease | Median Age at the Onset of Rheumatic Disease (Years) | Disease Duration Pre-MAS | Suspected Infectious Triggers | Clinical Features | Treatment |
---|---|---|---|---|---|---|---|
1 | F | UA | 10.75 | 0.05 | (1a) Clostridium difficile (fecal test) | Persistent fever, hepatomegaly, motor polyneuropathy, sierositis, acute renal failure | High doses of methylprednisolone, ciclosporin A, intravenous immunoglobulins, metronidazole (IV) |
2.75 | (1b) Coxsackie virus * (positive IgM) | Persistent fever, splenomegaly, pericardial effusion | High doses of methylprednisolone, ciclosporin A | ||||
6.25 | (1c) UTI | Persistent fever, serositis, acute renal failure | High doses of methylprednisolone, ciclosporin A, ampicillin-sulbactam IV | ||||
2 | F | sJIA | 3 | 11.5 | No infectious trigger identified | Persistent fever, splenomegaly, pericardial effusion, petechiae, acute renal failure | High doses of methylprednisolone, ciclosporin A, anakinra |
3 | M | sJIA | 7.3 | 2.9 | Staphylococcus hominis (blood cultures) | Persistent fever, lymphadenopathy, brain hemorrhage, interstitial lung disease | High doses of methylprednisolone, cyclosporin A, intravenous immunoglobulins. |
4 | F | sJIA | 14.25 | 2.75 | Entamoeba dispar/histolytica andEndolimax nana (parasitological search of feces positive) | Persistent fever, hepatomegaly, lymphadenopathy, pericardial effusion | High doses of methylprednisolone, cyclosporin A |
5 | M | sJIA | 3 | 0.5 | VZV (specific IgM) | Persistent fever, hepatosplenomegaly, interstitial lung disease | High doses of methylprednisolone, cyclosporin A, intravenous immunoglobulins, acyclovir IV |
6 | F | sJIA | 10 | 0 | No infectious trigger identified | Persistent fever, hepatomegaly, lymphadenopathy, pericardial effusion | High doses of methylprednisolone, cyclosporin A, anakinra |
7 | M | sJIA | 2.5 | 0.25 | Gastroenteritis | Persistent fever, hepatomegaly, lymphadenopathy, | High doses of methylprednisolone, cyclosporin A, anakinra |
8 | F | JDM | 13.2 | 0.8 | EBV (specific IgM) | Persistent fever, hepatosplenomegaly, serositis | High doses of methylprednisolone, cyclosporin A, intravenous immunoglobulins |
9 | F | JDM | 4.3 | 0.1 | Group A Streptococcus (throat swab) | Persistent fever, hepatosplenomegaly, interstitial lung disease, acute renal failure | High doses of methylprednisolone, cyclosporin A, intravenous immunoglobulins |
10 | F | SLE | 12.25 | 0.05 | Adenovirus * (specific IgM) | Persistent fever, hepatosplenomegaly | High doses of methylprednisolone, cyclosporin A |
11 | F | SLE | 16.6 | 2.2 | Pseudomonas aeruginosa (positive cultures from a cutaneous swab) | Persistent fever, hepatosplenomegaly | High doses of methylprednisolone, cyclosporin A, intravenous immunoglobulins, |
12 | M | SLE | 10.2 | 0.05 | Adenovirus (positive DNA) | Splenomegaly, serositis | High doses of methylprednisolone, cyclosporin A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossano, M.; Rogani, G.; D’Errico, M.M.; Cucchetti, M.; Baldo, F.; Torreggiani, S.; Beretta, G.; Lanni, S.; Petaccia, A.; Agostoni, C.; et al. Infection-Triggered Hyperinflammatory Syndromes in Children. Children 2022, 9, 564. https://doi.org/10.3390/children9040564
Rossano M, Rogani G, D’Errico MM, Cucchetti M, Baldo F, Torreggiani S, Beretta G, Lanni S, Petaccia A, Agostoni C, et al. Infection-Triggered Hyperinflammatory Syndromes in Children. Children. 2022; 9(4):564. https://doi.org/10.3390/children9040564
Chicago/Turabian StyleRossano, Martina, Greta Rogani, Maria Maddalena D’Errico, Martina Cucchetti, Francesco Baldo, Sofia Torreggiani, Gisella Beretta, Stefano Lanni, Antonella Petaccia, Carlo Agostoni, and et al. 2022. "Infection-Triggered Hyperinflammatory Syndromes in Children" Children 9, no. 4: 564. https://doi.org/10.3390/children9040564
APA StyleRossano, M., Rogani, G., D’Errico, M. M., Cucchetti, M., Baldo, F., Torreggiani, S., Beretta, G., Lanni, S., Petaccia, A., Agostoni, C., Filocamo, G., & Minoia, F. (2022). Infection-Triggered Hyperinflammatory Syndromes in Children. Children, 9(4), 564. https://doi.org/10.3390/children9040564