The Analysis of the Correlations between BMI and Body Composition among Children with and without Intellectual Disability
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jacinto, M.; Vitorino, A.S.; Palmeira, D.; Antunes, R.; Matos, R.; Ferreira, J.P.; Bento, T. Perceived Barriers of Physical Activity Participation in Individuals with Intellectual Disability—A Systematic Review. Healthcare 2021, 9, 1521. [Google Scholar] [CrossRef] [PubMed]
- Kampasová, J.; Válková, H. Analysis of developmental trends in physical activity, BMI and muscles in children and adolescents with mild-to-moderate intellectual disability. Heliyon 2021, 7, e07457. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wang, T.; Zhong, T.; Qian, Y.; Qi, J. Barriers and Facilitators of Physical Activity Participation among Children and Adolescents with Intellectual Disabilities: A Scoping Review. Healthcare 2022, 10, 233. [Google Scholar] [CrossRef] [PubMed]
- Forman-Hoffman, V.L.; Ault, K.L.; Anderson, W.L.; Weiner, J.M.; Stevens, A.; Campbell, V.A.; Armour, B.S. Disability status, mortality, and leading causes of death in the United States community population. Med. Care 2015, 53, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Froehlich-Grobe, K.; Lee, J.; Washburn, R.A. Disparities in obesity and related conditions among Americans with disabilities. Am. J. Prev. Med. 2013, 45, 83–90. [Google Scholar] [CrossRef]
- Horner-Johnson, W.; Dobbertin, K.; Lee, J.C.; Andresen, E.M. Disparities in chronic conditions and health status by type of disability. Disabil. Health J. 2013, 6, 280–286. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; The World Bank. World Report on Disability. 2011. Available online: https://www.who.int/disabilities/world_report/2011/report.pdf (accessed on 17 January 2022).
- Emerson, E.; Llewellyn, G. Identifying children at risk of intellectual disability in UNICEF’s multiple indicator cluster surveys: Cross-sectional survey. Disabil. Health J. 2021, 14, 100986. [Google Scholar] [CrossRef]
- Official Journal of the European Union. 2018. Available online: https://eur-lex.europa.eu/legal-content/RO/TXT/PDF/?uri=CELEX:52017IP0474&from=EN (accessed on 11 January 2022).
- Heller, T.; McCubbin, J.A.; Drum, C.; Peterson, J. Physical activity and nutrition health promotion interventions: What is working for people with intellectual disability? Intellect. Dev. Disabil. 2011, 49, 26–36. [Google Scholar] [CrossRef]
- Bartolo, P.; Klei, P.J. Physical activity benefits and needs in adults with intellectual disabilities: Systematic review of the literature. AJIDD 2011, 116, 220–232. [Google Scholar] [CrossRef]
- Pontifex, M.B.; Saliba, B.J.; Raine, L.B.; Picchietti, D.L.; Hillman, C.H. Exercise improves behavioral, neurocognitive, and scholastic performance in children with attention-deficit/hyperactivity disorder. J. Paediatr. 2013, 162, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Giagazoglou, P.; Kokaridas, D.; Sidiropoulou, M.; Patsiaouras, A.; Karra, C.; Neofotistou, K. Effects of a trampoline exercise intervention on motor performance and balance ability of children with intellectual disabilities. Res. Dev. Disabil. 2013, 34, 2701–2707. [Google Scholar] [CrossRef] [PubMed]
- Mauro, A.; Bruland, D.; Latteck, Ä.-D. “With Enthusiasm and Energy throughout the Day”: Promoting a Physically Active Lifestyle in People with Intellectual Disability by Using a Participatory Approach. Int. J. Environ. Res. Public Health 2021, 18, 12329. [Google Scholar] [CrossRef] [PubMed]
- Cho, C.; Shin, W.; Kong, S. Participation in Regular Physical Activity According to the Type of Disability, Sex, Point of Disability Diagnosis, and Ability to Walk Independently in South Korea. Healthcare 2021, 9, 1079. [Google Scholar] [CrossRef] [PubMed]
- NCD-RisC Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents and adults. Lancet 2017, 390, 2627–2642. [CrossRef] [Green Version]
- Pop, T.L.; Miu, N. Physical Activity and Children’s Health; Palestrica Mileniului III—Civilizaţie şi Sport: Cluj-Napoca, Romania, 2011; Volume 12, pp. 60–65. [Google Scholar]
- Wiklund, P. The role of physical activity and exercise in obesity and weight management: Time for critical appraisal. J. Sport Health Sci. 2016, 5, 151–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanita.com. Available online: https://tanita.eu/help-guides/products-manuals/ (accessed on 31 January 2022).
- Tanita.com. Available online: https://tanita.eu/media/wysiwyg/manuals/declaration-of-conformity/MC580-EU-declaration-of-conformity.pdf (accessed on 3 February 2022).
- Tanita.com. Available online: https://www.tanita-fitness.ro/usr/aaa/6135ece965737.pdf (accessed on 2 February 2022).
- Muhanna, R.G.; Aljuraiban, G.S.; Almadani, N.K.; Alquraishi, M.; El-Sharkawy, M.S.; Abulmeaty, M.M.A. Value of Adding Bioelectrical Impedance Analysis to Anthropometric Indices in the Diagnosis of Metabolic Syndrome in 10–16 Years Old Schoolgirls. Healthcare 2022, 10, 419. [Google Scholar] [CrossRef] [PubMed]
- Pellikaan, K.; Rosenberg, A.G.W.; Davidse, K.; Kattentidt-Mouravieva, A.A.; Kersseboom, R.; Bos-Roubos, A.G.; Grootjen, L.N.; Damen, L.; van den Berg, S.A.A.; van der Lely, A.J.; et al. Effects of Childhood Multidisciplinary Care and Growth Hormone Treatment on Health Problems in Adults with Prader-Willi Syndrome. J. Clin. Med. 2021, 10, 3250. [Google Scholar] [CrossRef]
- Nana, A.; Staynor, J.M.D.; Arlai, S.; El-Sallam, A.; Dhungel, N.; Smith, M.K. Agreement of anthropometric and body composition measures predicted from 2D smartphone images and body impedance scales with criterion methods. Obes. Res. Clin. Pract. 2022, 16, 37–43. [Google Scholar] [CrossRef]
- Jeong, G.; Chun, B. Analysis of the Relationship between Obesity Factors and Health-Related Physical Fitness Factors among People with Intellectual Disabilities in South Korea. Int. J. Environ. Res. Public Health 2021, 18, 6533. [Google Scholar] [CrossRef]
- Skrzypek, M.; Koch, W.; Goral, K.; Soczyńska, K.; Poźniak, O.; Cichoń, K.; Przybysz, O.; Marcin, C. Analysis of the Diet Quality and Nutritional State of Children, Youth and Young Adults with an Intellectual Disability: A Multiple Case Study. Preliminary Polish Results. Nutrients 2021, 13, 3058. [Google Scholar] [CrossRef]
- WHO. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World. Available online: https://www.who.int/health-topics/physical-activity#tab=tab_1 (accessed on 3 April 2022).
- Rodriguez, A.; Korzeniowska, K.; Szarejko, K.; Borowski, H.; Brzeziński, M.; Myśliwiec, M.; Czupryniak, L.; Berggren, P.-O.; Radziwiłł, M.; Soszyński, P. Fitness, Food, and Biomarkers: Characterizing Body Composition in 19,634 Early Adolescents. Nutrients 2022, 14, 1369. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, Z.; Maruyama, H.; Onoda, K.; Huang, Q. Body Fat Percentage and Normal-Weight Obesity in the Chinese Population: Development of a Simple Evaluation Indicator Using Anthropometric Measurements. Int. J. Environ. Res. Public Health 2022, 19, 4238. [Google Scholar] [CrossRef] [PubMed]
- Baranauskas, M.; Kupčiūnaitė, I.; Stukas, R. The Association between Rapid Weight Loss and Body Composition in Elite Combat Sports Athletes. Healthcare 2022, 10, 665. [Google Scholar] [CrossRef]
- Hsu, P.-J.; Chou, H.-S.; Pan, Y.-H.; Ju, Y.-Y.; Tsai, C.-L.; Pan, C.-Y. Sedentary Time, Physical Activity Levels and Physical Fitness in Adults with Intellectual Disabilities. Int. J. Environ. Res. Public Health 2021, 18, 5033. [Google Scholar] [CrossRef]
- WHO. Every Move Counts towards Better Health. 2020. Available online: https://www.who.int/news/item/25-11-2020-every-move-counts-towards-better-health-says-who (accessed on 3 April 2022).
- Rúa-Alonso, M.; Rial-Vázquez, J.; Nine, I.; Lete-Lasa, J.R.; Clavel, I.; Giráldez-García, M.A.; Rodríguez-Corral, M.; Dopico-Calvo, X.; Iglesias-Soler, E. Comparison of Physical Fitness Profiles Obtained before and during COVID-19 Pandemic in Two Independent Large Samples of Children and Adolescents: DAFIS Project. Int. J. Environ. Res. Public Health 2022, 19, 3963. [Google Scholar] [CrossRef]
Subjects | Gender | N | Age (mean ± std.dev.) | Casuistic Observation | Educational Institution |
---|---|---|---|---|---|
Group 1 (without ID) Without intellectual disability | M | 23 | 17.7 ± 0.9 | without ID | Mainstream education |
Group 2 (without ID) Without intellectual disability | F | 26 | 17.2 ± 0.9 | without ID | Mainstream education |
Group 3 (MID) Moderate intellectual disability | M | 34 | 16.4 ± 0.9 | MID | “Sf. Andrei” School Centre Gura Humorului; “Constantin Păunescu” School Centre Iaşi |
Group 4 (MID) Moderate intellectual disability | F | 12 | 16.2 ± 0.1 | MID | “Sf. Andrei” School Centre Gura Humorului; “Constantin Păunescu” School Centre Iaşi |
Group 5 (SID) Severe intellectual disability | M | 6 | 16.8 ± 0.9 | SID | “Sf. Andrei” School Centre Gura Humorului; “Constantin Păunescu” School Centre Iaşi |
Group/Variable | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 |
---|---|---|---|---|---|
Age—years | 0.795 | 0.275 | 0.476 | 0.322 | 0.035 |
Height—cm | 0.558 | 0.506 | 0.873 | 0.000 ** | 0.109 |
Body mass—Kg | 0.054 | 0.012 * | 0.348 | 0.636 | 0.847 |
BMI (kg/m2) | 0.122 | 0.015 | 0.005 * | 0.310 | 0.538 |
Body fat % | 0.288 | 0.099 | 0.200 | 0.170 | 0.411 |
Muscle mass % | 0.378 | 0.096 | 0.000 ** | 0.007 * | 0.324 |
BMR (kcal) | 0.055 | 0.481 | 0.318 | 0.747 | 0.707 |
Body fat—Kg | 0.048 | 0.006 * | 0.003 * | 0.724 | 0.733 |
Muscle mass—Kg | 0.093 | 0.96 | 0.514 | 0.276 | 0.847 |
SMM | 0.201 | 0.967 | 0.501 | 0.250 | 0.945 |
Variable | N | Mean | Std. Deviation | Std. Error | Minimum | Maximum | |
---|---|---|---|---|---|---|---|
BMI (kg/h2) | G 1 | 23 | 22.957 | 4.1716 | 0.8698 | 17.7 | 32.5 |
G 2 | 26 | 21.581 | 3.7966 | 0.7446 | 15.9 | 34.2 | |
G 3 | 34 | 22.538 | 4.3805 | 0.7512 | 17.2 | 34.7 | |
G 4 | 12 | 21.325 | 3.2897 | 0.9497 | 17.3 | 26.6 | |
G 5 | 6 | 22.333 | 5.3166 | 2.1705 | 16.0 | 29.0 | |
Total | 101 | 22.231 | 4.0903 | 0.4070 | 15.9 | 34.7 | |
Body fat % | G 1 | 23 | 16.148 | 7.1465 | 1.4902 | 4.6 | 27.8 |
G 2 | 26 | 25.912 | 5.4527 | 1.0694 | 18.6 | 40.0 | |
G 3 | 34 | 19.144 | 8.2409 | 1.4133 | 6.6 | 38.7 | |
G 4 | 12 | 25.767 | 6.7294 | 1.9426 | 17.5 | 41.7 | |
G 5 | 6 | 23.333 | 12.6438 | 5.1618 | 6.0 | 38.0 | |
Total | 101 | 21.240 | 8.3611 | 0.8320 | 4.6 | 41.7 | |
Muscle mass % | G 1 | 23 | 47.022 | 4.6759 | 0.9750 | 36.3 | 54.0 |
G 2 | 26 | 41.942 | 3.0833 | 0.6047 | 33.9 | 46.1 | |
G 3 | 34 | 44.326 | 7.2026 | 1.2352 | 19.6 | 52.9 | |
G 4 | 12 | 40.442 | 6.8489 | 1.9771 | 22.4 | 46.7 | |
G 5 | 6 | 43.500 | 7.2042 | 2.9411 | 35.0 | 53.0 | |
Total | 101 | 43.816 | 6.0662 | 0.6036 | 19.6 | 54.0 | |
BMR(kcal) | G 1 | 23 | 1887.09 | 274.216 | 57.178 | 1496 | 2726 |
G 2 | 26 | 1400.54 | 128.759 | 25.252 | 1170 | 1726 | |
G 3 | 34 | 1744.26 | 226.088 | 38.774 | 1376 | 2165 | |
G 4 | 12 | 1393.92 | 60.237 | 17.389 | 1288 | 1489 | |
G 5 | 6 | 1549.00 | 152.548 | 62.277 | 1364 | 1757 | |
Total | 101 | 1635.08 | 281.966 | 28.057 | 1170 | 2726 | |
Body fat—Kg | G 1 | 23 | 12.548 | 8.0549 | 1.6796 | 3.0 | 33.7 |
G 2 | 26 | 15.719 | 5.8224 | 1.1419 | 8.6 | 35.1 | |
G 3 | 34 | 13.074 | 7.9548 | 1.3642 | 3.4 | 36.5 | |
G 4 | 12 | 14.900 | 4.9171 | 1.4195 | 7.7 | 23.0 | |
G 5 | 6 | 15.500 | 10.1931 | 4.1613 | 3.0 | 30.0 | |
Total | 101 | 13.996 | 7.2982 | 0.7262 | 3.0 | 36.5 | |
Muscle mass—Kg | G 1 | 23 | 56.809 | 8.6844 | 1.8108 | 41.9 | 83.2 |
G 2 | 26 | 40.054 | 4.0181 | 0.7880 | 32.1 | 49.8 | |
G 3 | 34 | 49.300 | 7.3912 | 1.2676 | 32.9 | 62.7 | |
G 4 | 12 | 39.467 | 3.3611 | 0.9703 | 34.1 | 44.0 | |
G 5 | 6 | 44.833 | 4.4907 | 1.8333 | 38.0 | 50.0 | |
Total | 101 | 47.196 | 9.1887 | 0.9143 | 32.1 | 83.2 | |
SMM | G 1 | 23 | 34.752 | 6.1352 | 1.2793 | 25.0 | 49.5 |
G 2 | 26 | 23.885 | 2.4054 | 0.4717 | 19.1 | 29.7 | |
G 3 | 34 | 29.400 | 4.3789 | 0.7510 | 19.6 | 37.3 | |
G 4 | 12 | 23.192 | 1.8362 | 0.5301 | 20.4 | 25.8 | |
G 5 | 6 | 26.667 | 2.5820 | 1.0541 | 23.0 | 30.0 | |
Total | 101 | 28.299 | 5.9250 | 0.5896 | 19.1 | 49.5 |
Dependent Variable | (I) Group | (J) Group | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
Height—cm | 1 | 3 | 7.1893 * | 2.3681 | 0.010 * | 1.498 | 12.880 |
5 | 8.6304 | 4.0208 | 0.089 | −1.033 | 18.293 | ||
3 | 5 | 1.4412 | 3.8839 | 0.927 | −7.893 | 10.775 | |
Body mass—Kg | 1 | 3 | 7.4680 | 3.8683 | 0.139 | −1.828 | 16.764 |
5 | 9.5406 | 6.5682 | 0.321 | −6.244 | 25.325 | ||
3 | 5 | 2.0725 | 6.3446 | 0.943 | −13.175 | 17.320 | |
BMI (kg/m2) | 1 | 3 | 0.4183 | 1.1858 | 0.934 | −2.431 | 3.268 |
5 | 0.6232 | 2.0134 | 0.949 | −4.215 | 5.462 | ||
3 | 5 | 0.2049 | 1.9448 | 0.994 | −4.469 | 4.879 | |
Body fat % | 1 | 3 | −2.9963 | 2.2491 | 0.383 | −8.401 | 2.409 |
5 | −7.1855 | 3.8189 | 0.153 | −16.363 | 1.992 | ||
3 | 5 | −4.1892 | 3.6889 | 0.496 | −13.054 | 4.676 | |
Muscle mass % | 1 | 3 | 2.6953 | 1.7261 | 0.270 | −1.453 | 6.843 |
5 | 3.5217 | 2.9308 | 0.457 | −3.522 | 10.565 | ||
3 | 5 | 0.8265 | 2.8310 | 0.954 | −5.977 | 7.630 | |
BMR (kcal) | 1 | 3 | 142.822 | 64.809 | 0.079 | −12.93 | 298.57 |
5 | 338.087 * | 110.043 | 0.009 * | 73.63 | 602.54 | ||
3 | 5 | 195.265 | 106.296 | 0.166 | −60.19 | 450.72 | |
Body fat—Kg | 1 | 3 | −0.5257 | 2.2140 | 0.969 | −5.847 | 4.795 |
5 | −2.9522 | 3.7593 | 0.713 | −11.987 | 6.082 | ||
3 | 5 | −2.4265 | 3.6313 | 0.783 | −11.153 | 6.300 | |
Muscle mass—Kg | 1 | 3 | 7.5087 * | 2.0805 | 0.002 * | 2.509 | 12.508 |
5 | 11.9754 * | 3.5325 | 0.004 * | 3.486 | 20.465 | ||
3 | 5 | 4.4667 | 3.4122 | 0.396 | −3.734 | 12.667 | |
SMM | 1 | 3 | 5.3522 * | 1.3473 | 0.001 * | 2.114 | 8.590 |
5 | 8.0855 * | 2.2876 | 0.002 * | 2.588 | 13.583 | ||
3 | 5 | 2.7333 | 2.2097 | 0.436 | −2.577 | 8.044 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungurean, B.C.; Cojocariu, A.; Abalașei, B.A.; Popescu, L.; Puni, A.R.; Stoica, M.; Pârvu, C. The Analysis of the Correlations between BMI and Body Composition among Children with and without Intellectual Disability. Children 2022, 9, 582. https://doi.org/10.3390/children9050582
Ungurean BC, Cojocariu A, Abalașei BA, Popescu L, Puni AR, Stoica M, Pârvu C. The Analysis of the Correlations between BMI and Body Composition among Children with and without Intellectual Disability. Children. 2022; 9(5):582. https://doi.org/10.3390/children9050582
Chicago/Turabian StyleUngurean, Bogdan Constantin, Adrian Cojocariu, Beatrice Aurelia Abalașei, Lucian Popescu, Alexandru Rares Puni, Marius Stoica, and Carmen Pârvu. 2022. "The Analysis of the Correlations between BMI and Body Composition among Children with and without Intellectual Disability" Children 9, no. 5: 582. https://doi.org/10.3390/children9050582
APA StyleUngurean, B. C., Cojocariu, A., Abalașei, B. A., Popescu, L., Puni, A. R., Stoica, M., & Pârvu, C. (2022). The Analysis of the Correlations between BMI and Body Composition among Children with and without Intellectual Disability. Children, 9(5), 582. https://doi.org/10.3390/children9050582