Optimal Design of Multi-Asset Options
Abstract
:1. Introduction
2. Preliminaries and Notation
3. Golden Strategies
4. Focusing on the Expected Shortfall and the Expectile
5. Focusing on the Black–Scholes–Merton Multi-Dimensional Model
5.1. Model Summary
5.2. The Stochastic Discount Factor
5.3. The Optimal Expected Shortfall-Linked Golden Strategy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmadi-Javid, Amir. 2012. Entropic value at risk: A new coherent risk measure. Journal of Optimization Theory and Applications 155: 1105–23. [Google Scholar] [CrossRef]
- Alexander, Siddharth, Thomas F. Coleman, and Yuying Li. 2006. Minimizing CVaR and VaR for a portfolio of derivatives. Journal of Banking & Finance 30: 538–605. [Google Scholar]
- Anderson, Edward J., and Peter Nash. 1987. Linear Programming in Infinite Dimensional Spaces. Hoboken: John Wiley & Sons. [Google Scholar]
- Artzner, Philippe, Freddy Delbaen, Jean-Marc Eber, and David Heath. 1999. Coherent measures of risk. Mathematical Finance 9: 203–28. [Google Scholar] [CrossRef]
- Balbás, Alejandro, Beatriz Balbás, and Raquel Balbás. 2016. Outperforming benchmarks with their derivatives: Theory and empirical evidence. Journal of Risk 18: 25–52. [Google Scholar] [CrossRef]
- Balbás, Alejandro, Beatriz Balbás, and Raquel Balbás. 2019. Golden options in financial mathematics. Mathematics and Financial Economics 13: 637–59. [Google Scholar] [CrossRef]
- Balbás, Alejandro, Beatriz Balbás, and Raquel Balbás. 2023a. Buy and hold golden strategies in financial markets with frictions and depth constraints. Applied Mathematical Finance 30: 231–48. [Google Scholar] [CrossRef]
- Balbás, Alejandro, Beatriz Balbás, Raquel Balbás, and Jean-Philippe Charron. 2023b. Bidual representation of expectiles. Risks 11: 220. [Google Scholar] [CrossRef]
- Bellini, Fabio, Bernhard Klar, Alfred Muller, and Emanuela Rosazza-Gianin. 2014. Generalized quantiles as risk measures. Insurance: Mathematics and Economics 54: 41–48. [Google Scholar] [CrossRef]
- Chen, Zhiping, and Qianhui Hu. 2018. On coherent risk measures induced by convex risk measures. Methodology and Computing in Applied Probability 20: 673–98. [Google Scholar] [CrossRef]
- Contreras, Mauricio, Alejandro Llanquihuen, and Marcelo Villena. 2016. On the solution of the multi-asset Black–Scholes model: Correlations, eigenvalues and geometry. Journal of Mathematical Finance 6: 562–79. [Google Scholar] [CrossRef]
- Duffie, Darrell. 1988. Security Markets: Stochastic Models. Cambridge: Academic Press. [Google Scholar]
- Embrechts, Paul, Tiantian Mao, Qiuqi Wang, and Ruodu Wang. 2021. Bayes risk, elicitability and the expected shortfall. Mathematical Finance 31: 1190–217. [Google Scholar] [CrossRef]
- Gentle, James E. 1998. Numerical Linear Algebra for Applications in Statistics. New York: Springer. [Google Scholar]
- Hamada, Mahmoud, and Michael Sherris. 2003. Contingent claim pricing using probability distortion operators: Method from insurance risk pricing and their relationship to financial theory. Applied Mathematical Finance 10: 19–47. [Google Scholar] [CrossRef]
- Kopp, P. E. 1984. Martingales and Stochastic Integrals. Cambridge: Cambridge University Press. [Google Scholar]
- Luenberger, David G. 1969. Optimization by Vector Spaces Methods. Hoboken: John Wiley & Sons. [Google Scholar]
- Mansini, Renata, Włodzimierz Ogryczak, and M. Grazia Speranza. 2007. Conditional value at risk and related linear programming models for portfolio optimization. Annals of Operations Research 152: 227–56. [Google Scholar] [CrossRef]
- Newey, Whitney K., and James L. Powell. 1987. Asymmetric least squares estimation and testing. Econometrica 55: 819–47. [Google Scholar] [CrossRef]
- Rockafellar, R. Tyrrell, and Stanislav Uryasev. 2000. Optimization of conditional-value-at-risk. Journal of Risk 2: 21–42. [Google Scholar] [CrossRef]
- Rockafellar, R. Tyrrell, Stan Uryasev, and Michael Zabarankin. 2006. Generalized deviations in risk analysis. Finance & Stochastics 10: 51–74. [Google Scholar]
- Stoyanov, Stoyan V., Svetlozar T. Rachev, and Frank J. Fabozzi. 2007. Optimal financial portfolios. Applied Mathematical Finance 14: 401–36. [Google Scholar] [CrossRef]
- Tadese, Mekonnen, and Samuel Drapeau. 2020. Relative bound and asymptotic comparison of expectile with respect to expected shortfall. Insurance: Mathematics and Economics 93: 387–99. [Google Scholar] [CrossRef]
- Wu, Fengyan, Deng Ding, Juliang Yin, Weiguo Lu, and Gangnan Yuan. 2023. Total value adjustment of multi-asset derivatives under multivariate CGMY processes. Risks 7: 308. [Google Scholar] [CrossRef]
- Zalinescu, C. 2002. Convex Analysis in General Vector Spaces. Singapore: World Scientific Publishing Co. [Google Scholar]
- Zhou, Zhiqiang, Hongying Wu, Yuezhang Li, Caijuan Kang, and You Wu. 2024. Three-layer artificial neural network for pricing multi-asset European option. Risks 12: 2770. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbás, A.; Balbás, B.; Balbás, R. Optimal Design of Multi-Asset Options. Risks 2025, 13, 16. https://doi.org/10.3390/risks13010016
Balbás A, Balbás B, Balbás R. Optimal Design of Multi-Asset Options. Risks. 2025; 13(1):16. https://doi.org/10.3390/risks13010016
Chicago/Turabian StyleBalbás, Alejandro, Beatriz Balbás, and Raquel Balbás. 2025. "Optimal Design of Multi-Asset Options" Risks 13, no. 1: 16. https://doi.org/10.3390/risks13010016
APA StyleBalbás, A., Balbás, B., & Balbás, R. (2025). Optimal Design of Multi-Asset Options. Risks, 13(1), 16. https://doi.org/10.3390/risks13010016