AI Literacy and Intention to Use Text-Based GenAI for Learning: The Case of Business Students in Korea
Abstract
:1. Introduction
2. Literature Review and Research Hypotheses
2.1. Text-Based GenAI in Education and AI Literacy
2.2. Research Hypotheses
3. Methodology
3.1. Research Instrument Development
3.2. Sample and Data Collection
4. Results
4.1. Survey Validation
4.2. Hypothesis Testing and Discussion
5. Conclusions and Limitations
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alam, A.; Hasan, M.; Raza, M.M. Impact of artificial intelligence (AI) on education: Changing paradigms and approaches. Towards Excell. 2022, 14, 281–289. [Google Scholar] [CrossRef]
- Lo, C.K. What is the impact of ChatGPT on education? A rapid review of the literature. Educ. Sci. 2023, 13, 410. [Google Scholar] [CrossRef]
- Adıgüzel, T.; Kaya, M.H.; Cansu, F.K. Revolutionizing Education with AI: Exploring the Transformative Potential of ChatGPT; Contemporary Educational Technology: London, UK, 2023. [Google Scholar]
- Sah, G.K.; Gupta, D.K.; Yadav, A.P. Analysis of ChatGPT and the future of artificial intelligence: Its effect on teaching and learning. J. AI Robot. Workplace Autom. 2024, 3, 64–80. [Google Scholar] [CrossRef]
- Liu, J.; Wang, C.; Liu, Z.; Gao, M.; Xu, Y.; Chen, J.; Cheng, Y. A bibliometric analysis of generative AI in education: Current status and development. Asia Pac. J. Educ. 2024, 44, 156–175. [Google Scholar] [CrossRef]
- Ali, K.; Barhom, N.; Tamimi, F.; Duggal, M. ChatGPT—A double-edged sword for healthcare education? Implications for assessments of dental students. Eur. J. Dent. Educ. 2024, 28, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, Y.; Liu, K.S.X.; Jiang, M.Y.C. Examining the moderating effect of motivation on technology acceptance of generative AI for English as a foreign language learning. Educ. Inf. Technol. 2024, 1–29. [Google Scholar] [CrossRef]
- Dalgıç, A.; Yaşar, E.; Demir, M. ChatGPT and learning outcomes in tourism education: The role of digital literacy and individualized learning. J. Hosp. Leis. Sport Tour. Educ. 2024, 34, 100481. [Google Scholar] [CrossRef]
- Pataranutaporn, P.; Danry, V.; Leong, J.; Punpongsanon, P.; Novy, D.; Maes, P.; Sra, M. AI-generated characters for supporting personalized learning and well-being. Nat. Mach. Intell. 2021, 3, 1013–1022. [Google Scholar] [CrossRef]
- Mohammadkarimi, E. Teachers’ reflections on academic dishonesty in EFL students’ writings in the era of artificial intelligence. J. Appl. Learn. Teach. 2023, 6. [Google Scholar] [CrossRef]
- Trust, T.; Whalen, J.; Mouza, C. Editorial: ChatGPT: Challenges, opportunities, and implications for teacher education. Contemp. Issues Technol. Teach. Educ. 2023, 23, 1–23. [Google Scholar]
- Fang, X.; Che, S.; Mao, M.; Zhang, H.; Zhao, M.; Zhao, X. Bias of AI-generated content: An examination of news produced by large language models. Sci. Rep. 2024, 14, 5224. [Google Scholar] [CrossRef] [PubMed]
- Scott-Branch, J.; Laws, R.; Terzi, P. The Intersection of AI, Information and Digital Literacy: Harnessing ChatGPT and Other Generative Tools to Enhance Teaching and Learning. 88th IFLA World Library and Information Congress (WLIC). 2023. Available online: https://www.ifla.org/resources/?_sfm_unitid=105138&_sfm_resource_type=All (accessed on 30 May 2024).
- Ciampa, K.; Wolfe, Z.M.; Bronstein, B. ChatGPT in education: Transforming digital literacy practices. J. Adolesc. Adult Lit. 2023, 67, 186–195. [Google Scholar] [CrossRef]
- Huang, C.W.; Coleman, M.; Gachago, D.; Van Belle, J.P. Using ChatGPT to Encourage Critical AI Literacy Skills and for Assessment in Higher Education. In Annual Conference of the Southern African Computer Lecturers’ Association; Springer Nature Switzerland: Cham, Switzerland, 2023; pp. 105–118. [Google Scholar]
- Weimann-Sandig, N. Digital literacy and artificial intelligence–does chat GPT introduce the end of critical thinking in higher education? In Proceedings of the 15th International Conference on Education and New Learning Technologies, Palma, Spain, 3–5 July 2023; pp. 16–21. [Google Scholar]
- Bender, S.M. Awareness of artificial intelligence as an essential digital literacy: ChatGPT and Gen-AI in the classroom. Change Engl. 2024, 31, 161–174. [Google Scholar] [CrossRef]
- Schiavo, G.; Businaro, S.; Zancanaro, M. Comprehension, apprehension, and acceptance: Understanding the influence of literacy and anxiety on acceptance of artificial intelligence. Technol. Soc. 2024, 77, 102537. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Southworth, J.; Migliaccio, K.; Glover, J.; Reed, D.; McCarty, C.; Brendemuhl, J.; Thomas, A. Developing a model for AI Across the curriculum: Transforming the higher education landscape via innovation in AI literacy. Comput. Educ. Artif. Intell. 2023, 4, 100127. [Google Scholar] [CrossRef]
- Wang, B.; Rau, P.L.P.; Yuan, T. Measuring user competence in using artificial intelligence: Validity and reliability of artificial intelligence literacy scale. Behav. Inf. Technol. 2023, 42, 1324–1337. [Google Scholar]
- UNESCO. Artificial Intelligence in Education: Challenges and Opportunities for Sustainable Development. Available online: https://www.gcedclearinghouse.org/sites/default/files/resources/190175eng.pdf (accessed on 30 May 2024).
- Akgun, S.; Greenhow, C. Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI Ethics 2022, 2, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.Y.; Hu, W. Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. Int. J. Educ. Technol. High. Educ. 2023, 20, 43. [Google Scholar] [CrossRef]
- Ballardini, R.M.; He, K.; Roos, T. AI-generated content: Authorship and inventorship in the age of artificial intelligence. In Online Distribution of Content in the EU 2019; Edward Elgar Publishing: Cheltenham, UK, 2018; pp. 117–135. [Google Scholar]
- Ng, D.T.K.; Leung, J.K.L.; Chu, S.K.W.; Qiao, M.S. Conceptualizing AI literacy: An exploratory review. Comput. Educ. Artif. Intell. 2021, 2, 100041. [Google Scholar] [CrossRef]
- Yu, C.W.; Chao, C.M.; Chang, C.F.; Chen, R.J.; Chen, P.C.; Liu, Y.X. Exploring behavioral intention to use a mobile health education website: An extension of the UTAUT 2 model. Sage Open 2021, 11, 21582440211055721. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M.; Gudergan, S.P. Advanced Issues in Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage: Thousand Oaks, CA, USA, 2018. [Google Scholar]
- Chiu, C.M.; Hsu, M.H.; Lai, H.; Chang, C.M. Re-examining the influence of trust on online repeat purchase intention: The moderating role of habit and its antecedents. Decis. Support Syst. 2012, 53, 835–845. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.W. A practical guide to factorial validity using PLS-graph: Tutorial and annotated example. Commun. Assoc. Inf. Syst. 2005, 16, 91–109. [Google Scholar] [CrossRef]
- Rahmi, B.; Birgoren, B.; Aktepe, A. A meta analysis of factors affecting perceived usefulness and perceived ease of use in the adoption of e-learning systems. Turk. Online J. Distance Educ. 2018, 19, 4–42. [Google Scholar]
Construct | Measurement Items | Source |
---|---|---|
AI literacy (AL) |
| [21] |
Social influence (SI) |
| [19,27] |
Performance expectancy (PE) |
| [19,27] |
Effort expectancy (EE) |
| [19,27] |
Intention to use text-based GenAI for learning (INT) |
| [19,27] |
Construct | No. of Items | Cronbach’s α | CR | AVE |
---|---|---|---|---|
AL | 5 | 0.847 | 0.891 | 0.621 |
SI | 5 | 0.845 | 0.884 | 0.605 |
PE | 5 | 0.870 | 0.906 | 0.659 |
EE | 5 | 0.909 | 0.933 | 0.738 |
INT | 4 | 0.931 | 0.951 | 0.829 |
Construct | AL | SI | PE | EE | INT |
---|---|---|---|---|---|
AL1 | 0.768 | 0.202 | 0.240 | 0.412 | 0.162 |
AL2 | 0.830 | 0.238 | 0.261 | 0.456 | 0.225 |
AL3 | 0.822 | 0.248 | 0.313 | 0.472 | 0.185 |
AL4 | 0.746 | 0.152 | 0.161 | 0.412 | 0.139 |
AL5 | 0.772 | 0.238 | 0.229 | 0.511 | 0.327 |
SI1 | 0.281 | 0.753 | 0.579 | 0.322 | 0.598 |
SI2 | 0.102 | 0.779 | 0.234 | 0.155 | 0.284 |
SI3 | 0.104 | 0.780 | 0.279 | 0.210 | 0.251 |
SI4 | 0.191 | 0.837 | 0.288 | 0.274 | 0.287 |
SI5 | 0.292 | 0.737 | 0.347 | 0.281 | 0.383 |
PE1 | 0.257 | 0.481 | 0.836 | 0.268 | 0.655 |
PE2 | 0.225 | 0.325 | 0.706 | 0.283 | 0.351 |
PE3 | 0.220 | 0.355 | 0.777 | 0.270 | 0.367 |
PE4 | 0.301 | 0.394 | 0.866 | 0.328 | 0.502 |
PE5 | 0.246 | 0.417 | 0.861 | 0.256 | 0.458 |
EE1 | 0.339 | 0.330 | 0.348 | 0.700 | 0.209 |
EE2 | 0.448 | 0.292 | 0.248 | 0.890 | 0.161 |
EE3 | 0.564 | 0.278 | 0.266 | 0.914 | 0.183 |
EE4 | 0.567 | 0.296 | 0.310 | 0.889 | 0.157 |
EE5 | 0.524 | 0.288 | 0.319 | 0.884 | 0.220 |
INT1 | 0.250 | 0.457 | 0.552 | 0.212 | 0.931 |
INT2 | 0.227 | 0.430 | 0.536 | 0.176 | 0.931 |
INT3 | 0.260 | 0.450 | 0.547 | 0.197 | 0.911 |
INT4 | 0.241 | 0.529 | 0.532 | 0.195 | 0.867 |
Construct | Mean | S.D. | AL | SI | PE | EE | INT |
---|---|---|---|---|---|---|---|
AL | 4.639 | 0.193 | 1 | ||||
SI | 4.063 | 0.800 | 0.277 | 1 | |||
PE | 5.124 | 0.158 | 0.309 | 0.494 | 1 | ||
EE | 5.081 | 0.237 | 0.577 | 0.342 | 0.344 | 1 | |
INT | 5.506 | 0.205 | 0.269 | 0.514 | 0.595 | 0.215 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, M. AI Literacy and Intention to Use Text-Based GenAI for Learning: The Case of Business Students in Korea. Informatics 2024, 11, 54. https://doi.org/10.3390/informatics11030054
Jang M. AI Literacy and Intention to Use Text-Based GenAI for Learning: The Case of Business Students in Korea. Informatics. 2024; 11(3):54. https://doi.org/10.3390/informatics11030054
Chicago/Turabian StyleJang, Moonkyoung. 2024. "AI Literacy and Intention to Use Text-Based GenAI for Learning: The Case of Business Students in Korea" Informatics 11, no. 3: 54. https://doi.org/10.3390/informatics11030054
APA StyleJang, M. (2024). AI Literacy and Intention to Use Text-Based GenAI for Learning: The Case of Business Students in Korea. Informatics, 11(3), 54. https://doi.org/10.3390/informatics11030054