In-Bed Monitoring: A Systematic Review of the Evaluation of In-Bed Movements Through Bed Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Selection Process
2.4. Data Extraction
2.5. Assessment of Risk of Bias
3. Results
3.1. Descriptive Characteristics of the Study
3.2. Characteristics of the Collected Data
3.3. Smart Bed Characteristics
3.4. In-Bed Movements
3.5. Machine Learning Techniques Applied
3.6. Risk of Bias Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kristoffersson, A.; Lindén, M. A Systematic Review of Wearable Sensors for Monitoring Physical Activity. Sensors 2022, 22, 573. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable Sensors for Remote Health Monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Ghersi, I.; Mariño, M.; Miralles, M.T. Smart Medical Beds in Patient-Care Environments of the Twenty-First Century: A State-of-Art Survey. BMC Med. Inform. Decis. Mak. 2018, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Karvounis, E.; Polymeni, S.; Tsipouras, M.; Koritsoglou, K.; Tzovaras, D. Smart Beds and Bedding Surfaces for Personalized Patient Care: A Review. In Proceedings of the 2021 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Preveza, Greece, 24–26 September 2021; pp. 1–8. [Google Scholar]
- Au-Yeung, W.-T.M.; Miller, L.; Dodge, H.H.; Reynolds, C.; Beattie, Z.; Vahia, I.; Kaye, J. Sensing a Problem: Proof of Concept for Characterizing and Predicting Agitation. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12079. [Google Scholar] [CrossRef] [PubMed]
- Subermaniam, K.; Welfred, R.; Subramanian, P.; Chinna, K.; Ibrahim, F.; Mohktar, M.S.; Tan, M.P. The Effectiveness of a Wireless Modular Bed Absence Sensor Device for Fall Prevention among Older Inpatients. Front. Public Health 2017, 4, 292. [Google Scholar] [CrossRef]
- Sakai, K.; Sanada, H.; Matsui, N.; Nakagami, G.; Sugama, J.; Komiyama, C.; Yahagi, N. Continuous Monitoring of Interface Pressure Distribution in Intensive Care Patients for Pressure Ulcer Prevention. J. Adv. Nurs. 2009, 65, 809–817. [Google Scholar] [CrossRef]
- Waltisberg, D.; Amft, O.; Brunner, D.P.; Troster, G. Detecting Disordered Breathing and Limb Movement Using In-Bed Force Sensors. IEEE J. Biomed. Health Inform. 2017, 21, 930–938. [Google Scholar] [CrossRef]
- Pino, E.J.; Dörner De la Paz, A.; Aqueveque, P.; Chávez, J.A.P.; Morán, A.A. Contact pressure monitoring device for sleep studies. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 4160–4163. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Ajami, S.; Khaleghi, L. A Review on Equipped Hospital Beds with Wireless Sensor Networks for Reducing Bedsores. J. Res. Med. Sci. 2015, 20, 1007–1015. [Google Scholar] [CrossRef]
- Viriyavit, W.; Sornlertlamvanich, V. Bed Position Classification by a Neural Network and Bayesian Network Using Noninvasive Sensors for Fall Prevention. J. Sens. 2020, 2020, e5689860. [Google Scholar] [CrossRef]
- Chollet, F.; Allaire, J.J. Deep Learning with R; Manning Publications: New York, NY, USA, 2018. [Google Scholar]
- Jiang, M.; Ma, Y.; Guo, S.; Jin, L.; Lv, L.; Han, L.; An, N. Using Machine Learning Technologies in Pressure Injury Management: Systematic Review. JMIR Med. Inform. 2021, 9, e25704. [Google Scholar] [CrossRef] [PubMed]
- Marchione, F.G.; Araújo, L.M.Q.; Araújo, L.V. Approaches That Use Software to Support the Prevention of Pressure Ulcer: A Systematic Review. Int. J. Med. Inform. 2015, 84, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.; Fidalgo, F.; Silva, A.; Metrôlho, J.; Santos, O.; Dionisio, R. Literature Review of Machine-Learning Algorithms for Pressure Ulcer Prevention: Challenges and Opportunities. Informatics 2021, 8, 76. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Moons, K.G.M.; Wolff, R.F.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S. PROBAST: A Tool to Assess Risk of Bias and Applicability of Prediction Model Studies: Explanation and Elaboration. Ann. Intern. Med. 2019, 170, W1–W33. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Albukhari, A.; Lima, F.; Mescheder, U. Bed-Embedded Heart and Respiration Rates Detection by Longitudinal Ballistocardiography and Pattern Recognition. Sensors 2019, 19, 1451. [Google Scholar] [CrossRef]
- Alinia, P.; Samadani, A.; Milosevic, M.; Ghasemzadeh, H.; Parvaneh, S. Pervasive Lying Posture Tracking. Sensors 2020, 20, 5953. [Google Scholar] [CrossRef]
- Olguın, D.O.; Pentland, A.S. Human Activity Recognition: Accuracy across Common Locations for Wearable Sensors. In Proceedings of the 2006 10th IEEE International Symposium on Wearable Computers, Montreux, Switzerland, 11–14 October 2006; pp. 11–14. [Google Scholar]
- Altun, K.; Barshan, B.; Tunçel, O. Comparative Study on Classifying Human Activities with Miniature Inertial and Magnetic Sensors. Pattern Recognit. 2010, 43, 3605–3620. [Google Scholar] [CrossRef]
- Arora, A.; Chakraborty, P.; Bhatia, M. Analysis of Data from Wearable Sensors for Sleep Quality Estimation and Prediction Using Deep Learning. Arab. J. Sci. Eng. 2020, 45, 10793–10812. [Google Scholar] [CrossRef]
- de Arriba-Pérez, F.; Caeiro-Rodríguez, M.; Santos-Gago, J.M. Collection and Processing of Data from Wrist Wearable Devices in Heterogeneous and Multiple-User Scenarios. Sensors 2016, 16, 1538. [Google Scholar] [CrossRef] [PubMed]
- Azimi, H.; Bouchard, M.; Goubran, R.; Knoefel, F. Unobtrusive Screening of Central Sleep Apnea From Pressure Sensors Measurements: A Patient-Specific Longitudinal Study. IEEE Trans. Instrum. Meas. 2020, 69, 3282–3296. [Google Scholar] [CrossRef]
- Bai, D.; Ho, M.C.; Mathunjwa, B.M.; Hsu, Y.L. Deriving Multiple-Layer Information from a Motion-Sensing Mattress for Precision Care. Sensors 2023, 23, 1736. [Google Scholar] [CrossRef]
- Breuss, A.; Gnarra, O.; Fujs, M.; Schmidt, M.; Riener, R. Sleep Position Classification with a Compact Pressure Textile Sensor Mattress Using Convolutional Neural Networks. Biomed. Signal Process. Control 2024, 90, 105775. [Google Scholar] [CrossRef]
- Bruser, C.; Diesel, J.; Zink, M.; Winter, S.; Schauerte, P.; Leonhardt, S. Automatic Detection of Atrial Fibrillation in Cardiac Vibration Signals. IEEE J. Biomed. Health Inform. 2013, 17, 162–171. [Google Scholar] [CrossRef]
- Casas, L.; Navab, N.; Demirci, S. Patient 3D Body Pose Estimation from Pressure Imaging. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 517–524. [Google Scholar] [CrossRef]
- Chica, M.; Campoy, P.; Pérez, M.A.; Rodríguez, T.; Rodríguez, R.; Valdemoros, Ó. Real-Time Recognition of Patient Intentions from Sequences of Pressure Maps Using Artificial Neural Networks. Comput. Biol. Med. 2012, 42, 364–375. [Google Scholar] [CrossRef]
- Cho, T.; Sunarya, U.; Yeo, M.; Hwang, B.; Koo, Y.; Park, C. Deep-ACTINet: End-to-End Deep Learning Architecture for Automatic Sleep-Wake Detection Using Wrist Actigraphy. Electronics 2019, 8, 1461. [Google Scholar] [CrossRef]
- Costello, F.J.; Kim, M.G.; Kim, C.; Lee, K.C. Exploring a Fuzzy Rule Inferred ConvLSTM for Discovering and Adjusting the Optimal Posture of Patients with a Smart Medical Bed. Int. J. Environ. Res. Public Health 2021, 18, 6341. [Google Scholar] [CrossRef]
- Pouyan, M.; Birjandtalab, J.; Heydarzadeh, M.; Nourani, M.; Ostadabbas, S. A Pressure Map Dataset for Posture and Subject Analytics; IEEE: Orlando, FL, USA, 2017; pp. 65–68. [Google Scholar]
- Davoodnia, V.; Ghorbani, S.; Etemad, A. Estimating Pose from Pressure Data for Smart Beds with Deep Image-Based Pose Estimators. Appl. Intell. 2022, 52, 2119–2133. [Google Scholar] [CrossRef]
- Ostadabbas, S.; Baran Pouyan, M.; Nourani, M.; Kehtarnavaz, N. In-Bed Posture Classification and Limb Identification. In Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, 22–24 October 2014; pp. 133–136. [Google Scholar]
- Clever, H.M.; Kapusta, A.; Park, D.; Erickson, Z.; Chitalia, Y.; Kemp, C.C. 3D Human Pose Estimation on a Configurable Bed from a Pressure Image; IEEE: Madrid, Spain, 2018. [Google Scholar]
- Diao, H.; Chen, C.; Yuan, W.; Amara, A.; Tamura, T.; Fan, J.; Meng, L.; Liu, X.; Chen, W. Deep Residual Networks for Sleep Posture Recognition with Unobtrusive Miniature Scale Smart Mat System. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Duvall, J.; Karg, P.; Brienza, D.; Pearlman, J. Detection and Classification Methodology for Movements in the Bed That Supports Continuous Pressure Injury Risk Assessment and Repositioning Compliance. J. Tissue Viability 2019, 28, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, L.; Ribeiro, F.; Metrôlho, J. Effects of the Number of Classes and Pressure Map Resolution on Fine-Grained In-Bed Posture Classification. Computation 2023, 11, 239. [Google Scholar] [CrossRef]
- Gabison, S.; Pupic, N.; Evans, G.; Dolatabadi, E.; Dutta, T. Measuring Repositioning in Home Care for Pressure Injury Prevention and Management. Sensors 2022, 22, 7013. [Google Scholar] [CrossRef]
- Garcia-Molina, G.; Winger, T.; Makaram, N.; Rao, M.R.; Chernega, P.; Shcherbakov, Y.; McGhee, L.; Chellamuthu, V.; Veneros, E.; Mills, R.; et al. Unobtrusive Skin Temperature Estimation on a Smart Bed. Sensors 2024, 24, 4882. [Google Scholar] [CrossRef]
- Gargees, R.; Keller, J.; Popescu, M.; Skubic, M. Non-Invasive Classification of Sleep Stages with a Hydraulic Bed Sensor Using Deep Learning; Pagan, J., Mokhtari, M., Aloulou, H., Abdulrazak, B., Cabrera, M., Eds.; Springer: Cham, Switzerland, 2019; Volume 11862, pp. 73–82. [Google Scholar]
- Hagihara, A.; Harada, F.; Shimakawa, H. Estimation of Posture and Prediction of the Elderly Getting out of Bed Using a Body Pressure Sensor. Int. J. Electr. Comput. Eng. (IJECE) 2021, 11, 1208–1222. [Google Scholar] [CrossRef]
- Hsiao, R.-S.; Mi, Z.; Yang, B.-R.; Kau, L.-J.; Bitew, M.A.; Li, T.-Y. Body Posture Recognition and Turning Recording System for the Care of Bed Bound Patients. Technol. Health Care 2015, 24 (Suppl. 1), S307–S312. [Google Scholar] [CrossRef]
- Hu, Q.; Tang, X.; Tang, W. A Real-Time Patient-Specific Sleeping Posture Recognition System Using Pressure Sensitive Conductive Sheet and Transfer Learning. IEEE Sens. J. 2021, 21, 6869–6879. [Google Scholar] [CrossRef]
- Hu, D.; Gao, W.; Ang, K.K.; Hu, M.; Chuai, G.; Huang, R. Smart Sleep Monitoring: Sparse Sensor-Based Spatiotemporal CNN for Sleep Posture Detection. Sensors 2024, 24, 4833. [Google Scholar] [CrossRef]
- Jung, H.; Kimball, J.; Receveur, T.; Gazi, A.; Agdeppa, E.; Inan, O. Estimation of Tidal Volume Using Load Cells on a Hospital Bed. IEEE J. Biomed. Health Inform. 2022, 26, 3330–3341. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, M.; Toba, S.; Fukuda, K.; Hori, S.; Abe, Y.; Ozaki, K. Application of Deep Learning to Develop a Safety Confirmation System for the Elderly in a Nursing Home. J. Robot. Mechatron. 2017, 29, 338–345. [Google Scholar] [CrossRef]
- Kusmakar, S.; Karmakar, C.; Zhu, Y.; Shelyag, S.; Drummond, S.; Ellis, J.; Angelova, M. A Machine Learning Model for Multi-Night Actigraphic Detection of Chronic Insomnia: Development and Validation of a Pre-Screening Tool. R. Soc. Open Sci. 2021, 8, 202264. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, N.; Wada, K. Bed-Leaving Prediction Using a Sheet-Type Pressure-Sensitive Sensor Base with Deep-Learning. J. Fiber Sci. Technol. 2017, 73, 343–347. [Google Scholar] [CrossRef]
- Liu, Q.; Kenny, M.; Nilforooshan, R.; Barnaghi, P. An Intelligent Bed Sensor System for Non-Contact Respiratory Rate Monitoring. arXiv 2021, arXiv:2103.13792. [Google Scholar]
- Manners, J.; Kemps, E.; Guyett, A.; Stuart, N.; Lechat, B.; Catcheside, P.; Scott, H. Estimating Vigilance from the Pre-Work Shift Sleep Using an under-Mattress Sleep Sensor. J. Sleep. Res. 2024, 33, e14138. [Google Scholar] [CrossRef]
- Matar, G.; Lina, J.-M.; Kaddoum, G. Artificial Neural Network for In-Bed Posture Classification Using Bed-Sheet Pressure Sensors. IEEE J. Biomed. Health Inform. 2020, 24, 101–110. [Google Scholar] [CrossRef]
- Bernal Monroy, E.; Polo Rodríguez, A.; Espinilla Estevez, M.; Medina Quero, J. Fuzzy Monitoring of In-Bed Postural Changes for the Prevention of Pressure Ulcers Using Inertial Sensors Attached to Clothing. J. Biomed. Inform. 2020, 107, 103476. [Google Scholar] [CrossRef]
- Mosquera-Lopez, C.; Leitschuh, J.; Condon, J.; Hagen, C.; Rajhbeharrysingh, U.; Hanks, C.; Jacobs, P. Design and Evaluation of a Non-Contact Bed-Mounted Sensing Device for Automated In-Home Detection of Obstructive Sleep Apnea: A Pilot Study. Biosensors 2019, 9, 90. [Google Scholar] [CrossRef]
- Pornpreedawan, P.; Puengsiricharoen, K.; Tantisatirapong, S.; Taweerutchana, R.; Sueaseenak, D. A Bed-Fall Notification System Using Pressure and Ultrasonic Sensors. Curr. Appl. Sci. Technol. 2022, 22, 10-55003. [Google Scholar] [CrossRef]
- Pupic, N.; Gabison, S.; Evans, G.; Fernie, G.; Dolatabadi, E.; Dutta, T. Detecting Patient Position Using Bed-Reaction Forces and Monitoring Skin-Bed Interface Forces for Pressure Injury Prevention and Management. medRxiv 2022, 22272323. [Google Scholar] [CrossRef]
- Rosales, L.; Su, B.; Skubic, M.; Ho, K. Heart Rate Monitoring Using Hydraulic Bed Sensor Ballistocardiogram. J. Ambient. Intell. Smart Environ. 2017, 9, 193–207. [Google Scholar] [CrossRef]
- Stern, L.; Fernie, G.; Roshan Fekr, A. A Novel In-Bed Body Posture Monitoring for Decubitus Ulcer Prevention Using Body Pressure Distribution Mapping. Biomed. Eng. Online 2024, 23, 34. [Google Scholar] [CrossRef] [PubMed]
- Tandon, A.; Goyal, A.; Clever, H.M.; Erickson, Z. BodyMAP—Jointly Predicting Body Mesh and 3D Applied Pressure Map for People in Bed. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024. [Google Scholar]
- Tapwal, R.; Misra, S.; Deb, P.K. I-Sheet: A Low-Cost Bedsheet Sensor for Remote Diagnosis of Isolated Individuals. IEEE Sens. J. 2023, 23, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Walsh, L.; McLoone, S.; Ronda, J.; Duffy, J.; Czeisler, C. Noncontact Pressure-Based Sleep/Wake Discrimination. IEEE Trans. Biomed. Eng. 2017, 64, 1750–1760. [Google Scholar] [CrossRef] [PubMed]
- Willemen, T.; Van Deun, D.; Verhaert, V.; Pirrera, S.; Exadaktylos, V.; Verbraecken, J.; Haex, B.; Vander Sloten, J. Automatic Sleep Stage Classification Based on Easy to Register Signals as a Validation Tool for Ergonomic Steering in Smart Bedding Systems. Work 2012, 41 (Suppl. 1), 1985–1989. [Google Scholar] [CrossRef]
- Austin, D.; Beattie, Z.T.; Riley, T.; Adami, A.M.; Hagen, C.C.; Hayes, T.L. Unobtrusive Classification of Sleep and Wakefulness Using Load Cells under the Bed. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2012, 2012, 5254–5257. [Google Scholar] [CrossRef]
- Bajkowski, T.M.; Marchal, N.; Saied-Walker, J.; Gupta, P.; Keller, J.M.; Skubic, M.; Scott, G.J. Cohort Discovery from Bed Sensor Data with Fuzzy Evidence Accumulation Clustering; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023. [Google Scholar]
- Belay, S.S.; Prince, T.; Beyene, T.B.; Marew, W.Y.; Kebede, A.D. Implementing a Robust IoT Solution to Monitor Prone Position Using Machine Learning Techniques; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 263–269. [Google Scholar]
- Breuss, A.; Sferrazza, C.; Pleisch, J.; D’Andrea, R.; Riener, R. Unobtrusive Sleep Position Classification Using a Novel Optical Tactile Sensor. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2023, 2023, 1–5. [Google Scholar] [CrossRef]
- Channa, A.; Yousuf, M.; Popescu, N. Machine Learning Algorithms for Posture Identification of Obstructive Sleep Apnea Patients Using IoT Solutions; IEEE: Iasi, Romania, 2020. [Google Scholar]
- Davoodnia, V.; Etemad, A. Identity and Posture Recognition in Smart Beds with Deep Multitask Learning; IEEE: Bari, Italy, 2019; pp. 3054–3059. [Google Scholar]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, E215–E220. [Google Scholar] [CrossRef]
- Duan, B.; Zhao, D.; Yang, J.; Wang, S. A Novel Posture Recognition Based on Time Series Supervised Learning Algorithm. In Proceedings of the 2021 IEEE International Conference on Intelligence and Safety for Robotics (ISR), Nagoya, Japan, 4–6 March 2021; pp. 394–398. [Google Scholar]
- Enayati, M.; Skubic, M.; Keller, J.M.; Popescu, M.; Farahani, N.Z. Sleep Posture Classification Using Bed Sensor Data and Neural Networks. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 461–465. [Google Scholar]
- Heydarzadeh, M.; Nourani, M.; Ostadabbas, S. In-Bed Posture Classification Using Deep Autoencoders. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 3839–3842. [Google Scholar]
- Husák, M.; Kaczmarczyk, V.; Baštán, O.; Benešl, T. Application of Body Posture Recognition Algorithm in IoT Smart Mattress. In Proceedings of the 2021 Selected Issues of Electrical Engineering and Electronics (WZEE), Rzeszow, Poland, 13–15 September 2021; pp. 1–3. [Google Scholar]
- Ibrahim, A.; Chaccour, K.; El Hassani, A.H.; Andres, E. SleepPal: A Novel System for Elderly Sleep Monitoring and Bed Falls Detection; Springer: Cham, Switzerland, 2024; Volume 2087, pp. 76–90. [Google Scholar]
- Lei, C.; Li, F.; Chen, X.; Yang, L. Pressure-Based In-Bed Pose Estimation Methods Using the Skinned Multi-Person Linear Model. In Proceedings of the 2024 4th Asia Conference on Information Engineering (ACIE), Singapore, 26–28 January 2024; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2024; pp. 74–79. [Google Scholar]
- Luo, S.; Zhao, C.; Fu, Y. An Intelligent Human Activity Recognition Method with Incremental Learning Capability for Bedridden Patients. In Proceedings of the 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 18–21 November 2018; pp. 1284–1289. [Google Scholar]
- Madokoro, H.; Shimoi, N.; Sato, K. Unrestrained Multi-Sensor Systems for Real-Time Prediction of Bed-Leaving Behavior Patterns. In Proceedings of the 2014 SICE Annual Conference (SICE), Sapporo, Japan, 9–12 September 2014; pp. 1946–1953. [Google Scholar]
- Matthies, D.J.C.; Haescher, M.; Chodan, W.; Bieber, G. DIY-PressMat: A Smart Sensor Mat for Posture Detection Applicable for Bed-Exit Intention Detection, Pressure Ulcer Prevention, and Sleep Apnea Mitigation. In Proceedings of the Proceedings of the 14th PErvasive Technologies Related to Assistive Environments Conference, Corfu, Greece, 29 June–2 July 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 76–80. [Google Scholar]
- Mendez, M.O.; Migliorini, M.; Kortelainen, J.M.; Nistico, D.; Arce-Santana, E.; Cerutti, S.; Bianchi, A.M. Evaluation of the Sleep Quality Based on Bed Sensor Signals: Time-Variant Analysis. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September; pp. 3994–3997. [CrossRef]
- Metsis, V.; Galatas, G.; Papangelis, A.; Kosmopoulos, D.; Makedon, F. Recognition of Sleep Patterns Using a Bed Pressure Mat. In Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments, Heraklion Crete, Greece, 25–27 May 2011; Association for Computing Machinery: New York, NY, USA, 2011; pp. 1–4. [Google Scholar]
- Migliorini, M.; Bianchi, A.M.; Nisticò, D.; Kortelainen, J.; Arce-Santana, E.; Cerutti, S.; Mendez, M.O. Automatic Sleep Staging Based on Ballistocardiographic Signals Recorded through Bed Sensors. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3273–3276. [Google Scholar]
- Moon, A.; Son, S.W.; Park, H. Exploration of Lossy Posture Classification Model Using In-Bed Flexible Pressure Sensors; IEEE: Boston, MA, USA, 2023; pp. 1–4. [Google Scholar]
- Mukai, T.; Matsuo, K.; Kato, Y.; Shimizu, A.; Guo, S. Lying Posture Detection for Unconstrained Measurement of Respiration and Heartbeat on a Bed. In Proceedings of the IASTED International Conference Biomedical Engineering (BioMed 2014), Zurich, Switzerland, 23–25 June 2014. [Google Scholar]
- Obo, T.; Kubota, N. Structured Learning in Fuzzy Spiking Neural Networks for Human State Estimation. In Proceedings of the 2014 World Automation Congress (WAC), Waikoloa, HI, USA, 3–7 August 2014; pp. 707–712. [Google Scholar]
- Perez-Macias, J.M.; Adavanne, S.; Viik, J.; Värri, A.; Himanen, S.-L.; Tenhunen, M. Assessment of Support Vector Machines and Convolutional Neural Networks to Detect Snoring Using Emfit Mattress. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 2883–2886. [Google Scholar]
- Pouyan, M.; Ostadabbas, S.; Nourani, M.; Pompeo, M. Classifying Bed Inclination Using Pressure Images; IEEE: Chicago, IL, USA, 2014; pp. 4663–4666. [Google Scholar]
- Pouyan, M.B.; Nourani, M.; Pompeo, M. Sleep State Classification Using Pressure Sensor Mats. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 1207–1210. [Google Scholar]
- Rangarajan, S.; Lee, Y.; Johnson, V.; Schorger, K.; Lee, H.; Nguyen, D.; Behfar, M.H.; Jansson, E.; Rekilä, J.; Hiltunen, J.; et al. A Novel IoT System For Patient-Centric Pressure Ulcer Prevention Using Sensor Embedded Dressings; IEEE: Pisa, Italy, 2022; pp. 42–45. [Google Scholar]
- Russo, A.; Licciardo, G.; Di Benedetto, L.; Rubino, A.; Liguori, R.; Naddeo, A.; Cappetti, N. Quantized Fully Convolution Neural Network for HW Implementation of Human Posture Recognition; IEEE: Washington, DC, USA, 2021. [Google Scholar]
- Sano, A.; Picard, R.W. Comparison of Sleep-Wake Classification Using Electroencephalogram and Wrist-Worn Multi-Modal Sensor Data. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014, 2014, 930–933. [Google Scholar] [CrossRef]
- Sawada, K.; Nakasho, K.; Wasaki, K.; Shimoi, N. Classification of Human Posture on Bed Using Machine Learning; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 547–548. [Google Scholar]
- Soleimani, R.; Pesch, D. Preventing Pressure Ulcers by Image Based Posture Detection; IEEE: L’Aquila, Italy, 2023; pp. 23–28. [Google Scholar]
- Vazquez-Santacruz, E.; Gamboa-Zuniga, M. An Intelligent Device for Assistance in Caring for the Health of Patients with Motor Disabilities; Xiao, Z., Tong, Z., Li, K., Wang, X., Li, K., Eds.; IEEE: Zhangjiajie, China, 2015; pp. 868–874. [Google Scholar]
- Vyas, N.; Ryoo, K.; Tesfaye, H.; Yi, R.; Skubic, M. Sleep Stage Classification Using Non-Invasive Bed Sensing and Deep Learning. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021; pp. 3232–3238. [Google Scholar]
- Wai, A.A.P.; Yuan-Wei, K.; Fook, F.S.; Jayachandran, M.; Biswas, J.; Cabibihan, J.-J. Sleeping Patterns Observation for Bedsores and Bed-Side Falls Prevention. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 2009, 6087–6090. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wan, Q.; Zhao, M.; Ke, Y.; Fang, Y.; Liang, Z.; Xie, F.; Cheng, J. MassNet: A Deep Learning Approach for Body Weight Extraction from A Single Pressure Image; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023; pp. 180–189. [Google Scholar]
- Yoon, J.; Moon, A.; Son, S.W. Effective Posture Classification Using Statistically Significant Data from Flexible Pressure Sensors. IEEE J. Flex. Electron. 2024, 3, 173–180. [Google Scholar] [CrossRef]
- Youngkong, P.; Panpanyatep, W. A Novel Double Pressure Sensors-Based Monitoring and Alarming System for Fall Detection; IEEE: Bangkok, Thailand, 2021; pp. 39–43. [Google Scholar]
- Yousefi, R.; Ostadabbas, S.; Faezipour, M.; Nourani, M.; Ng, V.; Tamil, L.; Bowling, A.; Behan, D.; Pompeo, M. A Smart Bed Platform for Monitoring & Ulcer Prevention. In Proceedings of the 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), Shanghai, China, 15–17 October 2011; Volume 3, pp. 1362–1366. [Google Scholar]
- Stern, L.; Roshan Fekr, A. Recent Advances and Applications of Textile Technology in Patient Monitoring. Healthcare 2023, 11, 3066. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Study Design | Population Category | Number of Participants | Number of Males | Number of Females | Age Mean | Setting | Sensor Type |
---|---|---|---|---|---|---|---|---|
Research article | ||||||||
Albukhari, 2019 [21] | Experimental | Volunteers | 7 | 6 | 1 | Controlled environment | Bed sensors | |
Alinia, 2020 [22] | Olguın & Pentland, 2006 [23]; Altun, 2010 [24] | Healthy volunteers | 30 | 7; 4 | 7; 4 | Controlled environment | Wearable | |
Arora, 2020 [25] | Observational; Arriba-Pérez, 2016 [26] | Volunteers | 2250 | Home | Wearable | |||
Azimi, 2020 [27] | Longitudinal | Elders | 9 | Nursing home | Bed sensors | |||
Bai, 2023 [28] | Experimental | Dementia nursing home residents | 24 | Hospital | Bed sensors | |||
Breuss, 2024 [29] | Experimental | Healthy volunteers | 21 | 12 | 9 | 28.3 (male) 29.5 (female) | Controlled environment | Bed sensors |
Bruser, 2013 [30] | Experimental | Healthy volunteers | 10 | 9 | 1 | 63.1 | Hospital | Bed sensors |
Casas, 2019 [31] | Experimental | healthy volunteers | 6 | 4 | 2 | Controlled environment | Bed sensors | |
Chica, 2012 [32] | Observational | Patients | 20 | 10 | 10 | Controlled environment | Bed sensors | |
Cho, 2019 [33] | Experimental | Healthy volunteers | 10 | 7 | 3 | Home | Wearable | |
Costello, 2021 [34] | Pouyan, 2017 [35] | Healthy volunteers | 13 | Controlled environment | Bed sensors | |||
Davoodnia, 2022 [36] | Ostadabbas, 2014 [37]; Pouyan, 2017 [35]; Clever, 2018 [38] | Healthy volunteers | 30 | Controlled environment | Bed sensors | |||
Diao, 2021 [39] | Experimental | Volunteers | 16 | 9 | 7 | Controlled environment | Bed sensors | |
Duvall, 2019 [40] | Experimental | Healthy volunteers | 10 | Controlled environment | Bed sensors | |||
Fonseca, 2023 [41] | Experimental | Healthy volunteers | 60 | Controlled environment (sensor sheets over and under a mattress) | Bed sensors | |||
Gabison, 2022 [42] | Experimental | Healthy volunteers | 9 | 4 | 5 | Home | Bed sensors | |
Garcia-Molina, 2024 [43] | Experimental | Healthy volunteers | 18 | 9 | 9 | 44.5 | Controlled environment; home | Both |
Gargees, 2019 [44] | Experimental | Healthy volunteers | 56 | 42 | 14 | 29.27 | Controlled environment | Bed sensors |
Hagihara, 2021 [45] | Experimental | Healthy volunteers | 14 | 2; 5 | 3; 4 | Controlled environment | Bed sensors | |
Hsiao, 2015 [46] | Experimental | Volunteers | 9 | Controlled environment | Bed sensors | |||
Hu, 2021 [47] | Experimental | Healthy volunteers | 5 | 3 | 2 | 29.2 | Controlled environment | Bed sensors |
Hu, 2024 [48] | Experimental | Healthy volunteers | 22 | 15 | 7 | Home | Bed sensors | |
Jung, 2022 [49] | Experimental | Healthy volunteers | 15 | 9 | 6 | 25.8 | Hospital | Bed sensors |
Kawakami, 2017 [50] | Experimental | Patients | 3 | 2 | 1 | 76.7 | Nursing home | Bed sensors |
Kusmakar, 2021 [51] | Observational | Patients; healthy volunteers | 80 | 38 | 42 | 47.6 | Home | Wearable |
Kuwahara & Wada, 2017 [52] | Observational | Healthy volunteers | 7 | Controlled environment | Bed sensors | |||
Liu, 2021 [53] | Observational | Healthy volunteers | 4 | 2 | 2 | 29.75 | Controlled environment | Bed sensors |
Manners, 2024 [54] | RCT | Healthy volunteers | 24 | 12 | 12 | 27.6 | Controlled environment | Bed sensors |
Matar, 2020 [55] | Observational | Healthy volunteers | 12 | 10 | 2 | 27.35 | Controlled environment | Bed sensors |
Monroy, 2020 [56] | Observational | Healthy volunteers | 7 | 4 | 3 | 24.75 | Controlled environment | Wearable |
Mosquera-Lopez, 2019 [57] | Observational | Patients | 14 | 11 | 3 | 48 | Controlled environment; home | Bed sensors |
Pornpreedawan, 2022 [58] | Experimental | Healthy volunteers | 10 | 5 | 5 | 22.5 | Controlled environment | Bed sensors |
Pupic, 2022 [59] | Observational; simulated | Healthy volunteers | 18 | 10 | 8 | 29.8 | Controlled environment | Bed sensors |
Raschella, 2022 [54] | Observational | Patients | 26 | 19 | 7 | 68 | Controlled environment; home | Wearable |
Rosales, 2017 [60] | Experimental | Elders | 4 | 4 | 0 | 91.25 | Nursing home | Bed sensors |
Stern, 2024 [61] | Experimental | Healthy volunteers | 10 | Hospital bed, home bed, home bed with foam mattress topper | Bed sensors | |||
Tandon, 2024 [62] | Experimental | Healthy volunteers | Controlled environment | Bed sensors | ||||
Tapwal, 2023 [63] | Experimental | COVID-19 patients | Controlled environment; home | Bed sensors | ||||
Walsh, 2017 [64] | Experimental | Healthy volunteers | 15 | 12 | 11 | Controlled environment | Bed sensors | |
Waltisberg, 2017 [9] | Observational | Patients | 9 | 6 | 3 | 53.6 | Controlled environment | Bed sensors |
Willemen, 2012 [65] | Simulated | Healthy volunteers | 10 | 22.95 | Controlled environment | Both | ||
Conference paper | ||||||||
Austin, 2012 [66] | Observational | Patients | 27 | 18 | 9 | 51 | Controlled environment | Wearable |
Bajkowski, 2023 [67] | Experimental | Elders | 19 | Nursing home | Bed sensors | |||
Belay, 2022 [68] | Experimental | Elders | 7 | Controlled environment | Bed sensors | |||
Breuss, 2023 [69] | Methodological | Healthy volunteers | 1 | Controlled environment | Bed sensors | |||
Channa, 2020 [70] | Pouyan, 2017 [35] | Healthy volunteers | 13 | 26.9 | Controlled environment | Bed sensors | ||
Davoodnia, 2019 [71] | Pouyan, 2017 [35]; Goldberger, 2000 [72] | Healthy volunteers | 13 | Controlled environment | Bed sensors | |||
Duan, 2021 [73] | Experimental | Volunteers | 8 | Controlled environment | Bed sensors | |||
Enayati, 2018 [74] | Experimental | Healthy volunteers | 58 | Controlled environment | Bed sensors | |||
Heydarzadeh, 2016 [75] | Experimental | Volunteers | 10 | Controlled environment | Bed sensors | |||
Husák, 2021 [76] | Methodological | Healthy volunteers | Controlled environment | Bed sensors | ||||
Ibrahim, 2024 [77] | Methodological | Healthy volunteers | 15 | Controlled laboratory environment | Wearable | |||
Lei, 2024 [78] | Methodological | Healthy volunteers | Controlled environment | Bed sensors | ||||
Luo, 2018 [79] | Experimental | Volunteers | 10 | Controlled environment | Bed sensors | |||
Madokoro, 2014 [80] | Experimental | Volunteers | 10 | Controlled environment | Bed sensors | |||
Matthies, 2021 [81] | Experimental | Volunteers | 11 | 8 | 3 | 31.45 | Controlled environment | Bed sensors |
Mendez, 2010 [82] | Experimental | Healthy volunteers | 11 | 0 | 11 | Controlled environment | Bed sensors | |
Metsis, 2011 [83] | Experimental | Volunteers | 3 | Controlled environment | Bed sensors | |||
Migliorini, 2010 [84] | Experimental | Healthy volunteers | 11 | 0 | 11 | Controlled environment | Bed sensors | |
Moon, 2023 [85] | Experimental | Bedridden patients | 5 | Hospital | Bed sensors | |||
Mukai, 2014 [86] | Experimental | Healthy volunteers | 11 | 7 | 4 | Controlled environment | Bed sensors | |
Oboe Kubota, 2014 [87] | Methodological | Volunteers | Controlled environment | Bed sensors | ||||
Perez-Macias, 2017 [88] | Experimental | Volunteers | 30 | 24 | 6 | Controlled environment | Bed sensors | |
Pouyan, 2014 [89] | Experimental | Volunteers | 15 | Controlled environment | Bed sensors | |||
Pouyan, 2015 [90] | Experimental | Volunteers | 8 | Controlled environment | Wearable | |||
Pouyan, 2017 [35] | Experimental | Healthy volunteers | 13 | 26.9 | Controlled environment | Bed sensors | ||
Rangarajan, 2022 [91] | Experimental | Healthy volunteers | 5 | Tertiary care, university-affiliated hospital | Wearable | |||
Russo, 2021 [92] | Pouyan, 2017 [35] | Healthy volunteers | 13 | Controlled environment | Bed sensors | |||
Sano & Picard, 2014 [93] | Experimental | Volunteers | 15 | Controlled environment | Wearable | |||
Sawada, 2022 [94] | Experimental | Healthy volunteers | 11 | Controlled environment | Bed sensors | |||
Soleimani & Pesch, 2023 [95] | Experimental | Patients at risk of pressure ulcers | 13 | Controlled environment | Bed sensors | |||
Vázquez-Santacruz & Gamboa-Zúñiga, 2016 [96] | Methodological | Volunteers | 1 | Controlled environment | Bed sensors | |||
Vyas, 2021 [97] | Observational | Patients | 5 | 2 | 3 | 66.2 | Hospital | Bed sensors |
Wai, 2009 [98] | Methodological | Volunteers | Controlled environment | Bed sensors | ||||
Wu, 2023 [99] | Experimental | Healthy volunteers | 10 | 7 | 3 | Controlled environment | Bed sensors | |
Yoon, 2024 [100] | Experimental | Healthy volunteers | 5 | 3 | 2 | Hospital | Bed sensors | |
Youngkong, 2021 [101] | Experimental | Volunteers | 6 | 3 | 3 | Controlled environment | Bed sensors | |
Yousefi, 2011 [102] | Methodological | Volunteers | Controlled environment | Bed sensors |
Characteristic | Overall | Other | Position Estimation | Sleep and Vigilance | Vital Signs | |
---|---|---|---|---|---|---|
N = 78 | N = 31 | N = 481 | N = 191 | N = 81 | ||
Type of input data | Acceleration data | 6 (7.7%) | 1 (33%) | 2 (4.2%) | 3 (16%) | 0 (0%) |
Multiple input data | 12 (15%) | 0 (0%) | 7 (15%) | 5 (26%) | 0 (0%) | |
Other | 5 (6.4%) | 0 (0%) | 1 (2.1%) | 4 (21%) | 0 (0%) | |
Pressure data | 29 (37%) | 2 (67%) | 21 (44%) | 2 (11%) | 4 (50%) | |
Pressure image/map | 1 (1.3%) | 0 (0%) | 1 (2.1%) | 0 (0%) | 0 (0%) | |
Vital sign data | 17 (22%) | 0 (0%) | 16 (33%) | 1 (5.3%) | 0 (0%) | |
Input data pre-processing | No | 8 (10%) | 0 (0%) | 0 (0%) | 4 (21%) | 4 (50%) |
MLT category | Deep learning | 29 (37%) | 2 (67%) | 22 (46%) | 3 (16%) | 2 (25%) |
Shallow learning | 39 (49%) | 1 (33%) | 21 (44%) | 12 (64%) | 5 (63%) | |
Both | 10 (13%) | 0 (0%) | 5 (10%) | 4 (21%) | 1 (13%) | |
MLT type | Boosting methods | 5 (6.4%) | 0 (0%) | 3 (6.3%) | 0 (0%) | 2 (25%) |
Discriminant analysis | 1 (1.3%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 0 (0%) | |
KNN-based | 6 (7.7%) | 0 (0%) | 5 (10%) | 1 (5.3%) | 0 (0%) | |
Linear models | 1 (1.3%) | 0 (0%) | 1 (2.1%) | 0 (0%) | 0 (0%) | |
Naive Bayes | 1 (1.3%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 0 (0%) | |
Other | 32 (41%) | 2 (67%) | 24 (50%) | 3 (16%) | 3 (38%) | |
Random Forest | 9 (12%) | 0 (0%) | 6 (13%) | 2 (11%) | 1 (13%) | |
SVM-based | 22 (28%) | 1 (33%) | 9 (19%) | 10 (53%) | 2 (25%) | |
Unsupervised Learning | 1 (1.3%) | 0 (0%) | 0 (0%) | 1 (5.3%) | 0 (0%) | |
Accuracy more than 95% | Yes | 36 (47%) | 2 (67%) | 29 (62%) | 2 (11%) | 3 (38%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocagli, H.; Lanera, C.; Borghini, C.; Khan, N.M.; Casamento, A.; Gregori, D. In-Bed Monitoring: A Systematic Review of the Evaluation of In-Bed Movements Through Bed Sensors. Informatics 2024, 11, 76. https://doi.org/10.3390/informatics11040076
Ocagli H, Lanera C, Borghini C, Khan NM, Casamento A, Gregori D. In-Bed Monitoring: A Systematic Review of the Evaluation of In-Bed Movements Through Bed Sensors. Informatics. 2024; 11(4):76. https://doi.org/10.3390/informatics11040076
Chicago/Turabian StyleOcagli, Honoria, Corrado Lanera, Carlotta Borghini, Noor Muhammad Khan, Alessandra Casamento, and Dario Gregori. 2024. "In-Bed Monitoring: A Systematic Review of the Evaluation of In-Bed Movements Through Bed Sensors" Informatics 11, no. 4: 76. https://doi.org/10.3390/informatics11040076
APA StyleOcagli, H., Lanera, C., Borghini, C., Khan, N. M., Casamento, A., & Gregori, D. (2024). In-Bed Monitoring: A Systematic Review of the Evaluation of In-Bed Movements Through Bed Sensors. Informatics, 11(4), 76. https://doi.org/10.3390/informatics11040076