Response Surface Optimization for Antioxidant Extraction and Attributes Liking from Roasted Rice Germ Flavored Herbal Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reagents
2.3. The Preparation and Extraction Process for Herbal Tea Flavored with Roasted Rice Germ
2.4. Evaluation of the Total Polyphenol Content
2.5. 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) Free Radical Scavenging Activity Assay
2.6. Hedonic Test
2.7. Design of the Experiment and Statistical Analysis
2.8. Model Verification
3. Results and Discussion
3.1. Model Fitting for RSM (Response Surface Methodology)
3.2. Effects of Extraction Temperature and Time on the Antioxidant Activity, Total Polyphenol Content, Flavor, and Overall Liking Score of Roasted Rice Germ Flavored Herbal Tea
3.3. Extraction Process Optimization and Verification of the Predictive Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craig, W.J. Health-promoting properties of common herbs. Am. J. Clin. Nutr. 1999, 70, 491s–499s. [Google Scholar] [CrossRef] [PubMed]
- Lazar, M.A. East meets West: An herbal tea finds a receptor. J. Clin. Investig. 2004, 113, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Jansi, M.; Siripongvutikorn, S. Thunbergia laurifolia, a tradition herbal tea of Thailand: Botanical, chemical composition, biological properties and processing influence. Int. Food Res. J. 2016, 23, 923–927. [Google Scholar]
- Chan, E.W.C.; Eng, S.Y.; Tan, Y.P.; Wong, Z.C.; Lye, P.Y.; Tan, L.N. Antioxidant and sensory properties of Thai herbal tea with emphasis on Tunbergia laurifolia Lindl. Chiang Mai J. Sci. 2012, 39, 599–609. [Google Scholar]
- Naithani, V.; Nair, S.; Kakkar, P. Decline in antioxidant capacity of Indian herbal teas during storage and its relation to phenolic content. Food Res. Int. 2006, 39, 176–181. [Google Scholar] [CrossRef]
- Aoshima, H.; Hirata, S.; Ayabe, S. Antioxidative and anti-hydrogen peroxide activities of various herbal teas. Food Chem. 2007, 103, 617–622. [Google Scholar] [CrossRef]
- Speiky, H.; Rocco, C.; Carrasco, C.; Lissi, E.A.; Lopez-Alarcon, C. Antioxidant screening of medicinal herbal teas. Phytother. Res. 2006, 20, 462–467. [Google Scholar] [CrossRef]
- Eroglu, E.; Tontul, I.; Topuz, A. Optimization of aqueous extraction and spray drying conditions for efficient processing of hibiscus blended rosehip tea powder. J. Food Processing Preserv. 2018, 39, e13643. [Google Scholar] [CrossRef]
- Wani, T.A.; Wani, S.M.; Shah, A.G.; Masoodi, F.A. Optimizing conditions for antioxidant extraction from Sea Buckthorn leaf (Hippophae rhamoides L.) as herbal tea using response surface methodology (RSM). Int. Food Res. J. 2013, 20, 1677–1681. [Google Scholar]
- Uysal, S.; Cvetavovic, A.; Zengin, G.; Duravic, S.; Aktumsek, A. Optimization of the extraction process of antioxidants from loquat leaves using response surface methodology. J. Food Processing Preserv. 2016, 41, e13185. [Google Scholar] [CrossRef]
- Bas, D.; Boyaci, I.H. Modelling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Salimi, A.; Maghsoudlou, Y.; Jafari, S.M.; Mahoonak, A.S.; Kashaninejad, M.; Ziaiifar, A.M. Preparation of lycopene emulsions by whey protein concentrate and maltodextrin and optimization by response surface methodology. J. Disper. Sci. Technol. 2014, 36, 274–283. [Google Scholar] [CrossRef]
- Sarfarazi, M.; Jafari, S.M.; Rajabzadeh, G. Extraction optimization of saffron nutraceuticals through response surface methodology. Food Anal. Methods 2015, 8, 2273–2285. [Google Scholar] [CrossRef]
- Wani, S.M.; Jan, N.; Wani, T.A.; Ahmad, M.; Masoodi, F.A.; Gani, A. Optimization of antioxidant activity and total polyphenols of dried apricot fruit extracts (Prunus armeniaca L.) using response surface methodology. J. Saudi Soc. Agric. Sci. 2017, 16, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Tipduangta, T.; Julsrigival, J.; Chaithatwatthana, K.; Pongterdsak, N.; Tipduangta, P.; Chansakaow, S. Antioxidant properties of Thai traditional herbal teas. Beverages 2019, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Rittisak, S.; Charoen, R.; Pongsri, R.; Tearyakul, P.; Savedboworn, W.; Riansa-ngawong, W. Optimization of Herbal health tea flavored with roasted rice germ (Khao Dawk Mali 105) using response surface methodology. Malays. J. Anal. Sci. 2019, 23, 495–504. [Google Scholar]
- Bassani, D.C.; Nunes, D.S.; Granato, D. Optimization of phenolics and flavonoids extraction conditions and antioxidant activity of roasted Yerba-Mate leaves (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) using response surface methodology. Ann. Brazil. Acad. Sci. 2014, 86, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Thaipong, K.; Boonprokob, U.; Crosby, K.; Zevallos, L.C.; Byme, H.D. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Matthus, B. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agr. Food. Chem. 2002, 50, 3444–3452. [Google Scholar] [CrossRef]
- Peryam, D.R.; Pilgrim, F.J. Hedonic scale method of measuring food preferences. J. Food Sci. 1957, 11, 9–14. [Google Scholar]
- Joglekar, A.M.; May, A.T. Product excellence through design of experiments. Cereal Food. World 1987, 32, 857–868. [Google Scholar]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Grosso, N.R.; Resurrecction, A.V.A. Prediction consumer acceptance rating of cracker-coated and roasted peanuts from descriptive analysis and hexanal measurements. J. Food Sci. 2002, 67, 1530–1537. [Google Scholar] [CrossRef]
- Quanhong, L.; Caili, F. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem. 2005, 92, 701–706. [Google Scholar] [CrossRef]
- Nishiyama, M.F.; Costa, M.A.F.; Costa, A.M.; Souza, C.G.M.; Boer, C.G.; Bracht, C.K.; Peralta, R.M. Brazilian green tea (Camellia sinensis var assamica): Effect of infusion time, mode of packaging and preparation on the extraction efficiency of bioactive compounds and on the stability of the beverage. Ciênc. Tecnol. Aliment. 2010, 30, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Chambers, D. Sensory descriptive evaluation: Brewing methods affect flavor of green tea. Asian J. Food Agro Ind. 2009, 2, 427–439. [Google Scholar]
- Granato, D.; Calado, V.M.A.; Jarvis, B. Observations on the use of statistical methods in food science and technology. Food Res. Int. 2014, 55, 137–149. [Google Scholar] [CrossRef]
Test Run a No. | Coded Level of Variable | |||
---|---|---|---|---|
Coded Value | Uncoded Value | |||
X1 | X2 | Extraction Temperature (°C) | Extraction Time (min) | |
1 | −1 | −1 | 70 | 3 |
2 | −1 | 0 | 70 | 4.5 |
3 | −1 | 1 | 70 | 6 |
4 | 0 | −1 | 80 | 3 |
5 | 0 | 1 | 80 | 6 |
6 | 1 | −1 | 90 | 3 |
7 | 1 | 0 | 90 | 4.5 |
8 | 1 | 1 | 90 | 6 |
9 | 0 | 0 | 80 | 4.5 |
10 | 0 | 0 | 80 | 4.5 |
11 | 0 | 0 | 80 | 4.5 |
12 | 0 | 0 | 80 | 4.5 |
13 | 0 | 0 | 80 | 4.5 |
No. of Panel | No. of Treatment | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 14 | 27 | 40 | 53 | 66 | 79 | 92 | 1 | 2 | 4 | 10 |
2 | 15 | 28 | 41 | 54 | 67 | 80 | 93 | 2 | 3 | 5 | 11 |
3 | 16 | 29 | 42 | 55 | 68 | 81 | 94 | 3 | 4 | 6 | 12 |
4 | 17 | 30 | 43 | 56 | 69 | 82 | 95 | 4 | 5 | 7 | 13 |
5 | 18 | 31 | 44 | 57 | 70 | 83 | 96 | 5 | 6 | 8 | 1 |
6 | 19 | 32 | 45 | 58 | 71 | 84 | 97 | 6 | 7 | 9 | 2 |
7 | 20 | 33 | 46 | 59 | 72 | 85 | 98 | 7 | 8 | 10 | 3 |
8 | 21 | 34 | 47 | 60 | 73 | 86 | 99 | 8 | 9 | 11 | 4 |
9 | 22 | 35 | 48 | 61 | 74 | 87 | 100 | 9 | 10 | 12 | 5 |
10 | 23 | 36 | 49 | 62 | 75 | 88 | 101 | 10 | 11 | 13 | 6 |
11 | 24 | 37 | 50 | 63 | 76 | 89 | 102 | 11 | 12 | 1 | 7 |
12 | 25 | 38 | 51 | 64 | 77 | 90 | 103 | 12 | 13 | 2 | 8 |
13 | 26 | 39 | 52 | 65 | 78 | 91 | 104 | 13 | 1 | 3 | 9 |
Quadratic Model of Responses | Source of Variation | p-Value |
---|---|---|
Y1: Antioxidant activity (R2 = 0.941) | Model | 0.000 * |
=13.8154 − 0.0474 X1 + 18.2173 X2 + 0.0058 X12 − 0.6695 X22 − 0.1327 X1X2 | Lack of fit | 0.957 |
Y2: Total polyphenol content (R2 = 0.849) | Model | 0.009 * |
=−50.3564 + 0.7944 X1 + 30.8394 X2 + 0.0008 X12 − 2.4005 X22 − 0.0949 X1X2 | Lack of fit | 0.100 |
Y3: Color liking score (R2 = 0.499) | Model | 0.332 |
=19.6621 − 0.3459 X1 − 0.1253 X2 + 0.0024 X12 + 0.0621 X22 − 0.0050 X1X2 | Lack of fit | 0.053 |
Y4: Odor liking score (R2 = 0.633) | Model | 0.141 |
=17.9345 − 0.2941 X1 + 0.0008 X2 + 0.0018 X12 − 0.0322 X22 + 0.0033 X1X2 | Lack of fit | 0.142 |
Y5: Flavor liking score (R2 = 0.758) | Model | 0.040 * |
=8.1069 − 0.1148 X1 + 0.7713 X2 + 0.0012 X12 + 0.0069 X22 − 0.0100 X1X2 | Lack of fit | 0.260 |
Y6: Overall liking score (R2 = 0.816) | Model | 0.017 * |
=5.5770 − 0.0905 X1 + 1.4958 X2 + 0.0010 X12 − 0.0674 X22 − 0.0100 X1X2 | Lack of fit | 0.114 |
Test Run a No. | Independent Variables | Dependent Variables | ||||||
---|---|---|---|---|---|---|---|---|
Ex. Temp. (°C) | Ex. Time (min) | Antioxidant Activity (% Inhibition) | Total Polyphenols (mgGAE/g) | Liking Score | ||||
Color | Odor | Flavor | Overall | |||||
X1 | X2 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | |
1 | 70 | 3 | 59.55 ± 1.05 | 61.22 ± 1.77 | 6.3 ± 1.6 | 6.5 ± 1.4 | 6.0 ± 1.2 | 5.9 ± 1.1 |
2 | 70 | 4.5 | 66.10 ± 0.40 | 65.46 ± 1.03 | 6.5 ± 1.3 | 6.4 ± 1.2 | 6.2 ± 1.6 | 6.2 ± 1.2 |
3 | 70 | 6 | 68.47 ± 1.90 | 70.15 ± 0.61 | 6.4 ± 0.9 | 6.3 ± 1.5 | 6.4 ± 1.4 | 6.4 ± 1.0 |
4 | 80 | 3 | 64.54 ± 1.33 | 65.22 ± 1.02 | 6.4 ± 1.2 | 6.3 ± 1.4 | 6.4 ± 1.6 | 6.1 ± 1.6 |
5 | 80 | 6 | 68.85 ± 2.11 | 67.81 ± 0.52 | 6.8 ± 1.5 | 6.3 ± 1.2 | 6.5 ± 1.2 | 6.5 ± 1.1 |
6 | 90 | 3 | 69.53 ± 0.52 | 72.18 ± 0.34 | 6.7 ± 1.4 | 6.4 ± 1.5 | 6.7 ± 1.2 | 6.5 ± 1.3 |
7 | 90 | 4.5 | 71.47 ± 0.42 | 78.52 ± 0.95 | 6.9 ± 1.4 | 6.7 ± 1.5 | 6.9 ± 1.1 | 6.9 ± 1.2 |
8 | 90 | 6 | 70.48 ± 1.73 | 75.42 ± 0.62 | 6.5 ± 1.7 | 6.4 ± 1.0 | 6.5 ± 1.4 | 6.4 ± 1.5 |
9 | 80 | 4.5 | 68.64 ± 1.36 | 76.04 ± 0.18 | 6.2 ± 1.5 | 6.3 ± 1.3 | 6.2 ± 1.3 | 6.4 ± 1.0 |
10 | 80 | 4.5 | 67.19 ± 0.69 | 74.59 ± 1.19 | 5.9 ± 1.4 | 6.2 ± 1.3 | 6.4 ± 1.1 | 6.3 ± 1.4 |
11 | 80 | 4.5 | 68.44 ± 0.49 | 74.78 ± 0.64 | 6.1 ± 1.6 | 6.3 ± 1.7 | 6.1 ± 0.9 | 6.3 ± 1.5 |
12 | 80 | 4.5 | 69.27 ± 1.61 | 76.70 ± 0.79 | 6.1 ± 1.3 | 6.3 ± 1.3 | 6.4 ± 1.2 | 6.3 ± 1.3 |
13 | 80 | 4.5 | 66.19 ± 0.59 | 72.18 ± 1.82 | 6.3 ± 1.8 | 6.4 ± 1.6 | 6.3 ± 1.3 | 6.5 ± 1.6 |
Extraction Process | Ex. Temp. (°C) | Ex. Time (min) | Antioxidant Activity (%) | Total Polyphenol Content (mgGAE/g) | ||||
Predicted Value | Observed Value | Error (%) | Predicted Value | Observed Value | Error (%) | |||
Point no. 1 | 87 | 4.5 | 70.06 | 70.89 ± 0.52 | 1.18 | 77.83 | 79.02 ± 0.93 | 1.53 |
Point no. 2 | 87 | 5.5 | 70.04 | 71.01 ± 1.20 | 1.39 | 76.40 | 78.53 ± 0.85 | 2.78 |
Point no. 3 | 88 | 5.0 | 70.52 | 71.83 ± 0.86 | 1.86 | 78.17 | 76.81 ± 0.68 | 1.75 |
Point no. 4 | 89 | 4.0 | 70.45 | 72.12 ± 0.32 | 2.36 | 77.85 | 75.23 ± 1.45 | 3.36 |
Point no. 5 | 89 | 4.5 | 70.81 | 72.55 ± 0.65 | 2.45 | 78.84 | 79.55 ± 0.79 | 0.90 |
Point no. 6 | 89 | 5.5 | 70.52 | 72.98 ± 1.05 | 3.48 | 77.23 | 79.78 ± 1.03 | 3.30 |
Extraction Process | Ex. Temp. (°C) | Ex. Time (min) | Flavor Liking Score | Overall Liking Score | ||||
Predicted Value | Observed Value | Error (%) | Predicted Value | Observed Value | Error (%) | |||
Point no. 1 | 87 | 4.5 | 6.9 | 6.7 ± 1.1 | 2.9 | 6.7 | 6.8 ± 1.2 | 1.1 |
Point no. 2 | 87 | 5.5 | 6.9 | 6.8 ± 1.3 | 1.0 | 6.7 | 6.5 ± 0.9 | 2.6 |
Point no. 3 | 88 | 5.0 | 6.9 | 6.6 ± 1.1 | 4.7 | 6.8 | 6.5 ± 1.1 | 3.7 |
Point no. 4 | 89 | 4.0 | 7.0 | 6.8 ± 1.4 | 3.3 | 6.8 | 6.6 ± 1.4 | 2.8 |
Point no. 5 | 89 | 4.5 | 7.0 | 6.9 ± 1.5 | 1.4 | 6.8 | 6.6 ± 1.5 | 3.0 |
Point no. 6 | 89 | 5.5 | 7.0 | 6.9 ± 1.3 | 0.7 | 6.7 | 6.9 ± 1.3 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rittisak, S.; Charoen, R.; Choosuk, N.; Savedboworn, W.; Riansa-ngawong, W. Response Surface Optimization for Antioxidant Extraction and Attributes Liking from Roasted Rice Germ Flavored Herbal Tea. Processes 2022, 10, 125. https://doi.org/10.3390/pr10010125
Rittisak S, Charoen R, Choosuk N, Savedboworn W, Riansa-ngawong W. Response Surface Optimization for Antioxidant Extraction and Attributes Liking from Roasted Rice Germ Flavored Herbal Tea. Processes. 2022; 10(1):125. https://doi.org/10.3390/pr10010125
Chicago/Turabian StyleRittisak, Sriwiang, Ratchanee Charoen, Natthaya Choosuk, Wanticha Savedboworn, and Wiboon Riansa-ngawong. 2022. "Response Surface Optimization for Antioxidant Extraction and Attributes Liking from Roasted Rice Germ Flavored Herbal Tea" Processes 10, no. 1: 125. https://doi.org/10.3390/pr10010125
APA StyleRittisak, S., Charoen, R., Choosuk, N., Savedboworn, W., & Riansa-ngawong, W. (2022). Response Surface Optimization for Antioxidant Extraction and Attributes Liking from Roasted Rice Germ Flavored Herbal Tea. Processes, 10(1), 125. https://doi.org/10.3390/pr10010125