Sintering and Smelting Property Investigations of Ludwigite
Abstract
:1. Introduction
2. Experimental Materials and Methods
2.1. Experimental Materials
2.2. Experimental Methods
3. Results and Discussion
3.1. Sintering Properties
3.1.1. Cold Metallurgical Properties
3.1.2. Low-Temperature Reduction and Pulverization
3.1.3. Comprehensive Weighted Scoring Method Analysis of Sintering Characteristics
3.2. Smelting Property of Ludwigite Sinters
3.2.1. Softening-Melting-Dripping Property
3.2.2. Shrinkage Behavior and Gas Permeability
3.2.3. Comprehensive Weighted Scoring Method Analysis of Smelting Property
3.3. Comprehensive Weighted Scoring Method Analysis of Integrated Metallurgical Properties
4. Conclusions
- (1)
- Considering the sintering characteristics of the vertical sintering speed, yield, drum strength and low-temperature reduction pulverization index for ludwigite ore, the primary and secondary influencing factors are: ordinary ore ratio, carbon content and basicity, and the optimal ore blending scheme is: basicity 1.7, ordinary ore blending ratio 60% and carbon content 5%.
- (2)
- Considering the smelting property of the softening start temperature, softening end temperature, softening zone, smelting start temperature, dripping temperature, smelting-dripping zone, maximum pressure difference and gas permeability index for ludwigite sinters, the primary and secondary influencing factors are: the carbon content, ordinary ore blending ratio and the basicity, and the optimal ore blending scheme: basicity 1.9, ordinary ore blending ratio 60% and carbon content 5.5%.
- (3)
- Comprehensively, considering the sintering characteristics and smelting properties of ludwigite sinters, the primary and secondary influencing factors are: carbon content, ordinary ore ratio and basicity, and the optimal ore blending plan is: basicity 1.9, ordinary ore blending ratio 60% and carbon content of 5.5%.
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Zheng, X.-J. Boron Iron Ore Processing; Chemical Industry Press: Beijing, China, 2009. [Google Scholar]
- Zhao, Q.-J.; He, C.-Q.; Gao, M.-H. Comprehensive utilization of ludwigite ore: Activation of ludwigite concentrate and mechanism of ludwigite-containing iron concentrate to improve the properties of sintered pellets. J. East China Inst. Metall. 1997, 14, 262–263. [Google Scholar]
- Zhang, J.-Y.; Cheng, J.; Li, Z.-L. Research on the new technology of flash roasting of ludwigite ore. Inorg. Salt Ind. 2009, 41, 42–43. [Google Scholar]
- Zhang, J.-L.; Cai, H.-T. Enrichment of ludwigite in low-grade ludwigite ore. J. Univ. Sci. Technol. Beijing 2009, 31, 36–40. [Google Scholar]
- Yuan, B.-F.; Zhang, L.-Q.; Zhang, F.-J. Study on sulfuric acid co-leaching of ludwigite, magnesium and iron from ludwigite and mafic ore. J. Shenyang Univ. Chem. Technol. 2013, 27, 20–24. [Google Scholar]
- Lu, Y.-P.; Long, T.; Feng, Q.-M. Floatability and mechanism of fine-grained serpentine. Chin. J. Nonferrous Met. 2009, 19, 1493–1497. [Google Scholar]
- United States Geological Survey. USGS 2020 Statistics; China Engineering Science and Technology Knowledge Center: Beijing, China, 2020.
- An, J.; Xue, X.-X.; Jiang, T. Study on ecological pressure of pyro-method separation process for ludwigite ore. J. Northeast. Univ. 2013, 34, 542–545. [Google Scholar]
- Zhang, L.-Q.; Yuan, B.-F.; Zhou, H.-F.; Liu, Z.-G. Extraction of magnesium sulfate from acid leaching solution of ludwigite and maficite by ethanol crystallization. J. Cent. South Univ. 2013, 44, 2681–2686. [Google Scholar]
- Li, Y.-L.; Qu, J.-K.; Wei, G.-Y.; Qi, T. Influence of Na2CO3 as additive on direct reduction of boron-bearing magnetite concentrate. J. Iron Steel Res. Int. 2016, 23, 103–108. [Google Scholar] [CrossRef]
- Wang, G.; Xue, Q.-G.; Wang, J.-S. Effect of Na2CO3 on reduction and melting separation of ludwigite/coal composite pellet and property of boron-rich slag. Trans. Nonferrous Met. Soc. China 2016, 26, 282–293. [Google Scholar] [CrossRef]
- Fu, X.-J.; Zhao, J.-Q.; Chen, S.-Y.; Liu, Z.-G.; Guo, T.-L.; Chu, M.-S. Comprehensive utilization of ludwigite ore based on metallizing reduction and magnetic separation. J. Iron Steel Res. Int. 2015, 22, 672–680. [Google Scholar] [CrossRef]
- Li, G.-H.; Liang, B.-J.; Rao, M.-J.; Zhang, Y.-B.; Jiang, T. An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore. Miner. Eng. 2014, 56, 57–60. [Google Scholar] [CrossRef]
- Guo, H.-W.; Bai, J.-L.; Zhang, J.-L.; Li, H.-G. Mechanism of strength improvement of magnetite pellet by adding boron-bearing iron concentrate. J. Iron Steel Res. Int. 2014, 21, 9–15. [Google Scholar] [CrossRef]
- Liu, S.-L.; Cui, C.-M.; Zhang, X.-P. Pyrometallurgical separation of boron from iron in ludwigite ore. ISIJ Int. 1998, 38, 1077–1079. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-D.; Liu, S.-L.; Li, Z.-F.; Xue, X.-X. Oxidation of silicon and boron in boron containing molten iron. J. Iron Steel Res. Int. 2007, 14, 32–36. [Google Scholar] [CrossRef]
- Sui, Z.-T.; Zhang, P.-X.; Yamauchi, C. Precipitation selectivity of boron compounds from slags. Acta Mater. 1999, 47, 1337–1344. [Google Scholar] [CrossRef]
- Jiang, T.; Xue, X.-X. Synthesis of (Ca, Mg)-α′-Sialon-AlNBN powders from boron-rich blast furnace slag by microwave carbothermal reduction-nitridation. Trans. Nonferrous Met. Soc. China 2012, 22, 2984–2990. [Google Scholar] [CrossRef]
- Jiang, T.; Wu, J.-B.; Xue, X.-X.; Duan, P.-N.; Chu, M.-S. Carbothermal formation and microstructural evolution of α’-Sialon-AlN-BN powders from boron-rich blast furnace slag. Adv. Powder Technol. 2012, 23, 406–413. [Google Scholar] [CrossRef]
- Song, H.-L.; Zhang, J.-P.; Cheng, G.-J.; Yang, S.-T.; Xue, X.-X. The effect of abandoned basic oxygen furnace gas blowing on the softening-melting-dripping performance of full high Cr-Bearing vanadia-titania magnetite pellets. Steel Res. Int. 2020, 91, 1900501. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Yang, S.-T.; Tang, W.-D.; Yang, H.; Xue, X.-X. Effect of coke breeze content on sintering mechanism and metallurgical properties of high-chromium vanadium-titanium magnetite. Ironmak. Steelmak. 2020, 47, 821–827. [Google Scholar] [CrossRef]
- Tang, W.-D.; Yang, S.-T.; Zhang, L.-H.; Huang, Z.; Yang, H.; Xue, X.-X. Effects of basicity and temperature on mineralogy and reduction behaviors of high-chromium vanadium-titanium magnetite sinters. J. Cent. South Univ. 2019, 26, 132–145. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Chu, M.-S.; Wang, H.-T.; Zhao, W.; Xue, X.-X. Effect of MgO content in sinter on the softening–melting behavior of mixed burden made from chromium-bearing vanadium–titanium magnetite. Int. J. Miner. Metall. Mater. 2016, 23, 25–32. [Google Scholar] [CrossRef]
Item | TFe | CaO | MgO | SiO2 | Al2O3 | TiO2 | V2O5 | P | Cr2O3 | B2O3 | VM | C Fix | CaCO3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ludwigite | 51.47 | 0.32 | 12.65 | 5.33 | 0.36 | 0.016 | 0.81 | 6.34 | |||||
Ordinary ore | 67.67 | 0.075 | 0.3 | 4.06 | 0.73 | 0.02 | 0 | ||||||
Returned sinter below 5 mm | 47.24 | 13.56 | 2.42 | 5.89 | 2.19 | 5.23 | 0.53 | 0.02 | 0.34 | ||||
Quicklime | 60.8 | 2.87 | 3.42 | 1.11 | 12.35 | ||||||||
Coke | 3.27 | 0.14 | 5.5 | 3.77 | 0.02 | 76.90 | 0.559 |
Parameter | Index | Parameter | Index |
---|---|---|---|
Material height | 700 mm | Sintering cup diameter | 320 mm |
Ignition negative pressure | 8.0 kPa | Ventilation negative Pressure | 10.0 kPa |
Ignition temperature | 1050 °C | Ignition time | 2.0 min |
Carbon content | 4.5~5.5% | Mixture moisture | 8.0 ± 0.1% |
Percent of return sinter below 5 mm | 15.00% | Thickness of base material | 30 mm |
Basicity | 1.7~2.1 | Granulation time | 10 min |
Level | Factor | ||
---|---|---|---|
A (Basicity/-) | C (Ordinary Ore Ratio/%) | B (Carbon Content/%) | |
I | 1.7 | 0 | 4.5 |
II | 1.9 | 30 | 5.0 |
III | 2.1 | 60 | 5.5 |
Item | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Basicity | 1.7 | 1.7 | 1.7 | 1.9 | 1.9 | 1.9 | 2.1 | 2.1 | 2.1 |
Ordinary ore ratio | 0 | 30% | 60% | 0 | 30% | 60% | 0 | 30% | 60% |
Carbon content | 4.5% | 5% | 5.5% | 5% | 5.5% | 4.5% | 5.5% | 4.5% | 5% |
Item | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Ludwigite | 73.35 | 44.2 | 15.1 | 71.6 | 42.7 | 13.7 | 69.9 | 41 | 12.3 |
Ordinary ore | 0 | 30 | 60 | 0 | 30 | 60 | 0 | 30 | 60 |
Carbon content | 4.5 | 5 | 5.5 | 5 | 5.5 | 4.5 | 5.5 | 4.5 | 5 |
Returned sinter below 5 mm | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Quicklime | 11.65 | 10.8 | 9.9 | 13.4 | 12.3 | 11.3 | 15.1 | 14 | 12.7 |
Total | 104.5 | 105 | 105.5 | 105.5 | 104.5 | 105 | 105 | 105.5 | 104.5 |
Basicity | 1.7 | 1.7 | 1.7 | 1.9 | 1.9 | 1.9 | 2.1 | 2.1 | 2.1 |
Temperature/°C | Room Temperature→200 | 200→500 | 500→900 | 900→1020 | 1020→Td |
---|---|---|---|---|---|
Temperature increasing rate/°C·min | 10 | 10 | 10 | 3 | 5 |
Gas atmosphere | - | N2, 5 L/min | N2, 3.5 L/min CO, 1.5 L/min | N2, 3.5 L/min CO, 1.5 L/min | N2, 3.5 L/min CO, 1.5 L/min |
Item | TFe | B2O3 | CaO | SiO2 | MgO | Al2O3 | MnO |
---|---|---|---|---|---|---|---|
1 | 48.90 | 5.57 | 10.55 | 7.47 | 9.29 | 1.00 | 0.74 |
2 | 47.65 | 3.68 | 12.24 | 7.94 | 9.01 | 1.67 | 0.60 |
3 | 51.77 | 1.82 | 9.93 | 10.04 | 3.09 | 1.70 | 0.77 |
4 | 48.85 | 5.46 | 11.50 | 8.21 | 8.65 | 0.86 | 0.53 |
5 | 52.91 | 3.63 | 8.85 | 10.01 | 3.04 | 1.41 | 0.62 |
6 | 50.38 | 1.73 | 10.70 | 8.53 | 6.38 | 1.20 | 0.45 |
7 | 50.92 | 5.36 | 10.86 | 8.73 | 5.25 | 1.13 | 0.72 |
8 | 51.59 | 3.36 | 10.98 | 9.75 | 3.14 | 1.27 | 0.66 |
9 | 51.12 | 1.68 | 9.49 | 8.76 | 6.48 | 1.08 | 0.62 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | Vertical Sintering Speed (VSS)/mm·min−1 | Yield Rate (YR)/% | Drum Strength (DS)/% |
---|---|---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 15.70 | 73.32 | 53.44 |
Experiment #2 | 1.7 | 30 | 5.0 | 19.44 | 75.34 | 62.21 |
Experiment #3 | 1.7 | 60 | 5.5 | 14.58 | 83.13 | 62.85 |
Experiment #4 | 1.9 | 0 | 5.0 | 21.21 | 78.36 | 60.41 |
Experiment #5 | 1.9 | 30 | 5.5 | 17.95 | 77.51 | 56.50 |
Experiment #6 | 1.9 | 60 | 4.5 | 17.5 | 82.31 | 59.24 |
Experiment #7 | 2.1 | 0 | 5.5 | 18.92 | 80.88 | 63.78 |
Experiment #8 | 2.1 | 30 | 4.5 | 21.21 | 73.40 | 54.21 |
Experiment #9 | 2.1 | 60 | 5 | 21.73 | 75.69 | 60.97 |
Average value 1 of VSS | 16.573 | 18.610 | 18.137 | |||
Average value 2 of VSS | 18.887 | 19.533 | 20.793 | |||
Average value 3 of VSS | 20.620 | 17.937 | 17.150 | |||
Range analyzing value of VSS | 4.047 | 1.596 | 3.643 | |||
Average value 1 of YR | 77.263 | 77.520 | 76.343 | |||
Average value 2 of YR | 79.393 | 75.417 | 76.463 | |||
Average value 3 of YR | 76.657 | 80.377 | 80.507 | |||
Range analyzing value of YR | 2.736 | 4.960 | 4.164 | |||
Average value 1 of DS | 59.500 | 59.210 | 55.630 | |||
Average value 2 of DS | 58.717 | 57.640 | 61.197 | |||
Average value 3 of DS | 59.653 | 61.020 | 61.043 | |||
Range analyzing value of DS | 0.936 | 3.380 | 5.567 |
Item | mD0 /g | m+6.3 /g | m3.15~6.3 /g | m0.5~3.15 /g | m−0.5 /g | RDI+6.3 /% | RDI+3.15 /% | RDI−0.5 /% |
---|---|---|---|---|---|---|---|---|
1 | 499.59 | 482.82 | 5.53 | 4.34 | 6.90 | 96.64 | 97.75 | 1.38 |
2 | 498.62 | 485.23 | 6.97 | 2.69 | 3.73 | 97.31 | 98.71 | 0.75 |
3 | 498.72 | 479.01 | 12.37 | 3.86 | 3.48 | 96.05 | 98.53 | 0.70 |
4 | 500.32 | 476.49 | 13.54 | 5.68 | 4.61 | 95.24 | 97.95 | 0.92 |
5 | 499.02 | 464.35 | 19.59 | 8.98 | 6.10 | 93.05 | 96.98 | 1.22 |
6 | 501.79 | 486.83 | 7.48 | 2.69 | 4.79 | 97.02 | 98.51 | 0.95 |
7 | 500.32 | 476.49 | 13.54 | 5.68 | 4.61 | 95.24 | 97.95 | 0.92 |
8 | 501.00 | 488.46 | 5.19 | 3.10 | 4.25 | 97.50 | 98.54 | 0.85 |
9 | 497.26 | 482.03 | 6.96 | 3.35 | 4.92 | 96.94 | 98.34 | 0.99 |
Item | TFe | B2O3 | CaO | SiO2 | MgO | Al2O3 | MnO |
---|---|---|---|---|---|---|---|
1 | 48.01 | 6.02 | 10.70 | 7.468 | 11.14 | 0.71 | 0.74 |
2 | 46.24 | 4.10 | 12.58 | 8.07 | 11.44 | 0.76 | 0.57 |
3 | 50.40 | 2.04 | 10.00 | 10.31 | 5.17 | 1.29 | 0.69 |
4 | 47.81 | 5.98 | 9.92 | 9.50 | 9.33 | 1.51 | 0.66 |
5 | 51.74 | 4.15 | 9.20 | 10.29 | 3.92 | 1.35 | 0.72 |
6 | 49.43 | 2.09 | 10.53 | 8.46 | 8.38 | 0.89 | 0.66 |
7 | 49.70 | 5.89 | 10.89 | 8.56 | 7.72 | 0.95 | 0.44 |
8 | 49.83 | 3.95 | 10.93 | 10.20 | 5.29 | 1.36 | 0.48 |
9 | 50.24 | 2.01 | 9.38 | 8.46 | 8.41 | 0.91 | 0.63 |
Item | Basicity | Ordinary Ore Ratio/% | Carbon Content/% | RDI+3.15/% |
---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 97.75 |
Experiment #2 | 1.7 | 30 | 5.0 | 98.71 |
Experiment #3 | 1.7 | 60 | 5.5 | 98.53 |
Experiment #4 | 1.9 | 0 | 5.0 | 97.95 |
Experiment #5 | 1.9 | 30 | 5.5 | 96.98 |
Experiment #6 | 1.9 | 60 | 4.5 | 98.51 |
Experiment #7 | 2.1 | 0 | 5.5 | 97.95 |
Experiment #8 | 2.1 | 30 | 4.5 | 98.54 |
Experiment #9 | 2.1 | 60 | 5.0 | 98.34 |
Average value 1 of RDI+3.15 | 98.883 | 97.883 | 98.267 | |
Average value 2 of RDI+3.15 | 97.813 | 98.077 | 98.333 | |
Average value 3 of RDI+3.15 | 98.277 | 98.460 | 97.820 | |
Range analyzing value of RDI+3.15 | 0.517 | 0.577 | 0.513 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | Vertical Sintering Speed (VSS)/mm·min−1 | Yield Rate (YR)/% | Drum Strength (DS)/% | RDI+3.15/% | /- |
---|---|---|---|---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 15.7 | 73.32 | 53.44 | 97.75 | 27.80 |
Experiment #2 | 1.7 | 30 | 5 | 19.44 | 75.34 | 62.21 | 98.71 | 63.72 |
Experiment #3 | 1.7 | 60 | 5.5 | 14.58 | 83.13 | 62.85 | 98.53 | 79.96 |
Experiment #4 | 1.9 | 0 | 5 | 21.21 | 78.36 | 60.41 | 97.95 | 56.20 |
Experiment #5 | 1.9 | 30 | 5.5 | 17.95 | 77.51 | 56.50 | 96.98 | 18.33 |
Experiment #6 | 1.9 | 60 | 4.5 | 17.5 | 82.31 | 59.24 | 98.51 | 70.06 |
Experiment #7 | 2.1 | 0 | 5.5 | 18.92 | 80.88 | 63.78 | 97.95 | 73.19 |
Experiment #8 | 2.1 | 30 | 4.5 | 21.21 | 73.40 | 54.21 | 98.54 | 38.90 |
Experiment #9 | 2.1 | 60 | 5 | 21.73 | 75.69 | 60.97 | 98.34 | 55.05 |
Average value 1 | 57.160 | 52.397 | 45.587 | w1 = 0.16; w2 = 0.24; w3 = 0.28; w4 = 0.33 Factor order: ordinary ore ratio, carbon content, basicity Optimal ore blending scheme: basicity 1.7, ordinary ore ratio 60%, carbon content 5.0% | ||||
Average value 2 | 48.197 | 40.317 | 58.323 | |||||
Average value 3 | 55.713 | 68.357 | 57.160 | |||||
Range analyzing value | 8.963 | 28.040 | 12.734 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | T4/°C | T40/°C | Ts/°C | Td/°C | T40-T4/ °C | Ts-T4/ °C | Td-Ts/ °C |
---|---|---|---|---|---|---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 606 | 966 | 1133 | 1410 | 360 | 527 | 277 |
Experiment #2 | 1.7 | 30 | 5 | 905 | 1072 | 1143 | 1360 | 167 | 238 | 217 |
Experiment #3 | 1.7 | 60 | 5.5 | 1032 | 1127 | 1186 | 1325 | 95 | 154 | 139 |
Experiment #4 | 1.9 | 0 | 5 | 898 | 951 | 1128 | 1351 | 53 | 230 | 223 |
Experiment #5 | 1.9 | 30 | 5.5 | 946 | 1080 | 1147 | 1316 | 136 | 201 | 169 |
Experiment #6 | 1.9 | 60 | 4.5 | 910 | 1072 | 1154 | 1378 | 162 | 244 | 224 |
Experiment #7 | 2.1 | 0 | 5.5 | 970 | 997 | 1216 | 1365 | 27 | 246 | 149 |
Experiment #8 | 2.1 | 30 | 4.5 | 630 | 970 | 1120 | 1339 | 340 | 490 | 219 |
Experiment #9 | 2.1 | 60 | 5 | 970 | 1086 | 1150 | 1375 | 116 | 180 | 225 |
Average value 1 of t4 | 847.667 | 824.667 | 715.333 | |||||||
Average value 2 of t4 | 918.000 | 827.000 | 924.333 | |||||||
Average value 3 of t4 | 856.667 | 970.667 | 982.667 | |||||||
Range analyzing value of t4 | 70.333 | 146.000 | 87.666 | |||||||
Average value 1 of ts | 1154.000 | 1159.000 | 1135.667 | |||||||
Average value 2 of ts | 1143.000 | 1136.667 | 1144.333 | |||||||
Average value 3 of ts | 1162.000 | 1163.333 | 1183.000 | |||||||
Range analyzing value of ts | 19.000 | 26.667 | 47.333 | |||||||
Average value 1 of td | 1365.000 | 1375.333 | 1375.667 | |||||||
Average value 2 of td | 1348.333 | 1338.333 | 1362.000 | |||||||
Average value 3 of td | 1359.667 | 1359.333 | 1335.333 | |||||||
Range analyzing value of td | 16.667 | 37.000 | 40.334 | |||||||
Average value 1 of t40-t4 | 207.333 | 146.667 | 287.333 | |||||||
Average value 2 of t40-t4 | 117.000 | 214.333 | 112.000 | |||||||
Average value 3 of t40-t4 | 161.000 | 124.333 | 86.000 | |||||||
Range analyzing value of t40-t4 | 90.333 | 90.000 | 201.333 | |||||||
Average value 1 of ts-t4 | 306.33 | 334.33 | 420.33 | |||||||
Average value 2 of ts-t4 | 225.00 | 309.67 | 216.00 | |||||||
Average value 3 of ts-t4 | 305.33 | 192.67 | 200.33 | |||||||
Range analyzing value of ts-t4 | 81.33 | 141.66 | 220.00 | |||||||
Average value 1 of td-ts | 194.333 | 199.667 | 223.333 | |||||||
Average value 2 of td-ts | 205.333 | 201.667 | 221.667 | |||||||
Average value 3 of td-ts | 197.667 | 196.000 | 152.333 | |||||||
Range analyzing value of td-ts | 11.000 | 5.667 | 71.000 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | △Pmax/kPa | S/kPa·°C |
---|---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 26.9 | 4300 |
Experiment #2 | 1.7 | 30 | 5 | 9.4 | 1075 |
Experiment #3 | 1.7 | 60 | 5.5 | 2.8 | 312 |
Experiment #4 | 1.9 | 0 | 5 | 9.7 | 1453 |
Experiment #5 | 1.9 | 30 | 5.5 | 2 | 336 |
Experiment #6 | 1.9 | 60 | 4.5 | 14.5 | 1489 |
Experiment #7 | 2.1 | 0 | 5.5 | 5.4 | 252 |
Experiment #8 | 2.1 | 30 | 4.5 | 13.9 | 1902 |
Experiment #9 | 2.1 | 60 | 5 | 8.1 | 971 |
Average value 1 of △Pmax | 14.000 | 18.433 | 12.333 | ||
Average value 1 of △Pmax | 8.433 | 9.067 | 9.767 | ||
Average value 1 of △Pmax | 8.467 | 3.400 | 8.800 | ||
Range analyzing value of △Pmax | 5.567 | 15.033 | 3.533 | ||
Average value 1 of S | 2001.667 | 2563.667 | 1869.000 | ||
Average value 2 of S | 1104.333 | 1166.333 | 938.667 | ||
Average value 3 of S | 924.000 | 300.000 | 1222.333 | ||
Range analyzing value of S | 1077.667 | 2263.667 | 930.333 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | /- |
---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 2.62 |
Experiment #2 | 1.7 | 30 | 5 | 51.85 |
Experiment #3 | 1.7 | 60 | 5.5 | 84.83 |
Experiment #4 | 1.9 | 0 | 5 | 52.89 |
Experiment #5 | 1.9 | 30 | 5.5 | 71.57 |
Experiment #6 | 1.9 | 60 | 4.5 | 47.69 |
Experiment #7 | 2.1 | 0 | 5.5 | 85.00 |
Experiment #8 | 2.1 | 30 | 4.5 | 30.95 |
Experiment #9 | 2.1 | 60 | 5 | 55.07 |
Average value 1 | 46.343 | 46.837 | 27.087 | w1 = 0.14; w2 = 0.10; w3 = 0.15; w4 = 0.19; w5 = 0.13; w6 = 0.15; w7 = 0.14 Factor order: carbon content, ordinary ore ratio, basicity Optimal ore blending scheme: basicity 1.9, ordinary ore ratio 60%, carbon content 5.5% |
Average value 2 | 57.383 | 51.367 | 53.180 | |
Average value 3 | 57.007 | 62.530 | 80.467 | |
Range analyzing value of t4 | 11.040 | 15.693 | 53.380 |
Item | Basicity/- | Ordinary Ore Ratio/% | Carbon Content/% | /- |
---|---|---|---|---|
Experiment #1 | 1.7 | 0 | 4.5 | 8.38 |
Experiment #2 | 1.7 | 30 | 5 | 59.86 |
Experiment #3 | 1.7 | 60 | 5.5 | 82.12 |
Experiment #4 | 1.9 | 0 | 5 | 67.35 |
Experiment #5 | 1.9 | 30 | 5.5 | 63.24 |
Experiment #6 | 1.9 | 60 | 4.5 | 67.69 |
Experiment #7 | 2.1 | 0 | 5.5 | 80.57 |
Experiment #8 | 2.1 | 30 | 4.5 | 37.18 |
Experiment #9 | 2.1 | 60 | 5 | 60.07 |
Average value 1 | 50.120 | 52.100 | 37.750 | w1 = 0.09, w2 = 0.06, w3 = 0.09, w4 = 0.12, w5 = 0.08, w6 = 0.09, w7 = 0.08, w8 = 0.10, w9 = 0.10, w10 = 0.11, w11 = 0.13 Factor order: carbon content, ordinary ore ratio, basicity Optimal ore blending scheme: basicity 1.9, ordinary ore ratio 60%, carbon content 5.5% |
Average value 2 | 66.096 | 53.427 | 62.427 | |
Average value 3 | 59.273 | 69.960 | 75.310 | |
Range analyzing value | 15.973 | 17.860 | 37.560 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, G.; Liu, X.; Yang, H.; Xue, X.; Li, L. Sintering and Smelting Property Investigations of Ludwigite. Processes 2022, 10, 159. https://doi.org/10.3390/pr10010159
Cheng G, Liu X, Yang H, Xue X, Li L. Sintering and Smelting Property Investigations of Ludwigite. Processes. 2022; 10(1):159. https://doi.org/10.3390/pr10010159
Chicago/Turabian StyleCheng, Gongjin, Xuezhi Liu, He Yang, Xiangxin Xue, and Lanjie Li. 2022. "Sintering and Smelting Property Investigations of Ludwigite" Processes 10, no. 1: 159. https://doi.org/10.3390/pr10010159
APA StyleCheng, G., Liu, X., Yang, H., Xue, X., & Li, L. (2022). Sintering and Smelting Property Investigations of Ludwigite. Processes, 10(1), 159. https://doi.org/10.3390/pr10010159