Prediction of PM2.5 Concentration on the Basis of Multi-Time Scale Fusion
Abstract
:1. Introduction
2. PM2.5 Prediction Model Based on Multi-Time Scale Fusion
2.1. LSTM (Long Short-Term Memory)
2.2. Ensemble Empirical Mode Decomposition (EEMD)
2.3. Attention Mechanism
2.4. Multi Time Scale Fusion Model
3. Results and Discussion
3.1. Experimental Configuration and Data Set Description
3.2. Data Pre-Processing
3.3. EEMD Decomposition of PM2.5 Concentration
3.4. Evaluation Index
3.5. Comparison of Experimental Results
3.5.1. Impact of Historical Time Windows on Model Performance
3.5.2. Performance Comparison of Multi-Step Prediction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, J.X.; Li, Q.; Zhu, Y.J.; Hou, J.X.; Feng, X. Research on time and space prediction model of air pollution based on RNN. Sci. Surv. Mapp. 2017, 42, 76–83. [Google Scholar]
- Qi, B.L.; Guo, K.P.; Yang, B.; Du, Y.M.; Liu, M.; Wang, J.N. Air quality prediction based on GCN-LSTM. Appl. Comput. Syst. 2021, 30, 208–213. [Google Scholar]
- He, Z.X.; Li, L. A prediction model of air pollutant concentration based on wavelet transform and LSTM. Environ. Eng. 2021, 39, 111–119. [Google Scholar]
- Huang, C.J.; Kuo, P.H. A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities. Sensors 2018, 18, 2220. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shahroudy, A.; Xu, D.; Kot, A.C.; Wang, G. Skeleton-based action recognition using spatio-temporal LSTM network with trust gates. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 3007–3021. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decompo-sition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, J.; Shao, Z.J.; Zhu, C.C. Robust prediction of PM (2.5) based on staged temporal attention network. Environ. Eng. 2021, 39, 1–9. [Google Scholar]
- Huang, W.J.; Li, D.Y.; Huang, Y. Long-term prediction of PM2.5 concentration based on deep learning. Appl. Res. Comput. 2021, 38, 1809–1814. [Google Scholar]
- Li, X.; Peng, L.; Yao, X.J.; Cui, S.L.; Hu, Y.; You, C.Z.; Chi, T. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environ. Pollut. 2017, 231, 997–1004. [Google Scholar] [CrossRef] [PubMed]
IMF Component | Period/h |
---|---|
IMF1 | 3 |
IMF2 | 5 |
IMF3 | 8 |
IMF4 | 15 |
IMF5 | 25 |
IMF6 | 46 |
IMF7 | 89 |
IMF8 | 168 |
IMF9 | 321 |
IMF10 | 659 |
IMF11 | 1395 |
IMF12 | 4000 |
IMF13 | 8572 |
IMF14 | 20,000 |
RES | -- |
Historical Window Time | LSTM | CNN-LSTM | Model of This Paper | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | Adjusted R2 | RMSE | MAE | Adjusted R2 | RMSE | MAE | Adjusted R2 | |
12 h | 14.65 | 9.39 | 0.90 | 13.85 | 9.56 | 0.91 | 10.62 | 7.27 | 0.94 |
24 h | 14.0 | 9.23 | 0.91 | 12.90 | 8.80 | 0.92 | 9.79 | 7.02 | 0.95 |
36 h | 14.24 | 9.15 | 0.90 | 12.96 | 8.91 | 0.92 | 9.66 | 6.95 | 0.95 |
48 h | 16.87 | 10.57 | 0.86 | 13.30 | 9.20 | 0.91 | 10.37 | 7.25 | 0.94 |
60 h | 17.16 | 11.07 | 0.86 | 14.90 | 10.34 | 0.89 | 10.99 | 7.56 | 0.94 |
72 h | 17.41 | 11.45 | 0.85 | 14.92 | 10.40 | 0.89 | 11.06 | 7.42 | 0.94 |
Time Step (Predicted) | LSTM | CNN-LSTM | Model of This Paper | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | Adjusted R2 | RMSE | MAE | Adjusted R2 | RMSE | MAE | Adjusted R2 | |
1 h | 14.25 | 9.15 | 0.90 | 12.96 | 8.91 | 0.92 | 9.96 | 6.95 | 0.95 |
4 h | 14.95 | 9.72 | 0.89 | 14.51 | 9.70 | 0.90 | 11.68 | 8.10 | 0.93 |
8 h | 16.88 | 11.16 | 0.86 | 15.20 | 10.26 | 0.89 | 14.25 | 9.69 | 0.90 |
12 h | 17.65 | 11.27 | 0.84 | 17.60 | 11.32 | 0.85 | 15.00 | 9.85 | 0.89 |
24 h | 21.21 | 13.48 | 0.78 | 20.80 | 13.63 | 0.79 | 18.48 | 11.78 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xia, W. Prediction of PM2.5 Concentration on the Basis of Multi-Time Scale Fusion. Processes 2022, 10, 171. https://doi.org/10.3390/pr10010171
Zhang J, Xia W. Prediction of PM2.5 Concentration on the Basis of Multi-Time Scale Fusion. Processes. 2022; 10(1):171. https://doi.org/10.3390/pr10010171
Chicago/Turabian StyleZhang, Jianfei, and Wangui Xia. 2022. "Prediction of PM2.5 Concentration on the Basis of Multi-Time Scale Fusion" Processes 10, no. 1: 171. https://doi.org/10.3390/pr10010171
APA StyleZhang, J., & Xia, W. (2022). Prediction of PM2.5 Concentration on the Basis of Multi-Time Scale Fusion. Processes, 10(1), 171. https://doi.org/10.3390/pr10010171