The Potential of Spectroscopic Techniques in Coffee Analysis—A Review
Abstract
:1. Introduction
2. Overview of Spectroscopic Techniques
3. Application of Spectroscopy Techniques in Coffee Analysis
3.1. Coffee Roasting and Monitoring
3.2. Prediction of Specialty Coffee Quality and Sensory Attributes
3.3. Detection of Defective Beans and Adulterants in Coffee
3.4. Discrimination of Coffee Based on Species, Variety, and Geographical Origin
3.5. Prediction of Coffee Chemical Composition
4. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- ICO Trade Statistcis. Available online: http://www.ico.org/trade_statistics.asp?section=Statistics (accessed on 31 August 2021).
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Coffee, tea, cocoa. In Food Chemistry, 4th ed.; Belitz, H.-D., Grosch, W., Schieberle, P., Eds.; Springer: Berlin, Germany, 2009; pp. 938–951. [Google Scholar]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Chromatographic Methods for Coffee Analysis: A Review. J. Food Res. 2017, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Salces, R.M.; Serra, F.; Reniero, F.; Héberger, K. Coffea arabica and Coffea canephora): Chemometric evaluation of phenolic and methylxanthine contents. J. Agric. Food Chem. 2009, 57, 4224–4235. [Google Scholar] [CrossRef] [PubMed]
- Wongsaipun, S.; Theanjumpol, P.; Muenmanee, N.; Boonyakiat, D.; Funsueb, S.; Kittiwachana, S. Application of Artificial Neural Network for Tracing the Geographical Origins of Coffee Bean in Northern Areas of Thailand Using Near Infrared Spectroscopy. Chiang Mai J. Sci. 2021, 48, 163–175. [Google Scholar]
- Yergenson, N.; Aston, D.E. Monitoring coffee roasting cracks and predicting with in situ near-infrared spectroscopy. J. Food Process Eng. 2020, 43, 13305. [Google Scholar] [CrossRef]
- Yergenson, N.; Aston, D.E. Online determination of coffee roast degree toward controlling acidity. J. Near Infrared Spectrosc. 2020, 28, 175–185. [Google Scholar] [CrossRef]
- Belchior, V.; Botelho, B.G.; Casal, S.; Oliveira, L.S.; Franca, A.S. FTIR and Chemometrics as Effective Tools in Predicting the Quality of Specialty Coffees. Food Anal. Methods 2020, 13, 275–283. [Google Scholar] [CrossRef]
- Safrizal; Sutrisno; Pujantoro, L.E.N.; Ahmad, U. Samsudin Predicting Lipid, Caffeine and Chlorogenic Acid Contents of Arabica Coffee Using NIRS. Int. J. Sci. Technol. Res. 2019, 8, 367–370. [Google Scholar]
- Reis, N.; Botelho, B.G.; Franca, A.S.; Oliveira, L. Simultaneous Detection of Multiple Adulterants in Ground Roasted Coffee by ATR-FTIR Spectroscopy and Data Fusion. Food Anal. Methods 2017, 10, 2700–2709. [Google Scholar] [CrossRef]
- Luna, A.S.; DaSilva, A.P.; DaSilva, C.S.; Lima, I.C.A.; DeGois, J.S. Chemometric methods for classification of clonal varieties of green coffee using Raman spectroscopy and direct sample analysis. J. Food Compos. Anal. 2019, 76, 44–50. [Google Scholar] [CrossRef]
- Suhandy, D.; Yulia, M. Discrimination of several Indonesian specialty coffees using Fluorescence Spectroscopy combined with SIMCA method. IOP Conf. Ser. Mater. Sci. Eng. 2018, 334, 012059. [Google Scholar] [CrossRef]
- Botelho, B.G.; Oliveira, L.S.; Franca, A.S. Fluorescence spectroscopy as tool for the geographical discrimination of coffees produced in different regions of Minas Gerais State in Brazil. Food Control 2017, 77, 25–31. [Google Scholar] [CrossRef]
- El-Abassy, R.M.; Donfack, P.; Materny, A. Discrimination between Arabica and Robusta green coffee using visible micro Raman spectroscopy and chemometric analysis. Food Chem. 2011, 126, 1443–1448. [Google Scholar] [CrossRef]
- Zettel, V.; Ahmad, M.H.; Beltramo, T.; Hermannseder, B.; Hitzemann, A.; Nache, M.; Paquet-Durand, O.; Schöck, T.; Hecker, F.; Hitzmann, B. Supervision of food manufacturing processes using optical process analyzers—An overview. ChemBioEng Rev. 2016, 3, 219–228. [Google Scholar] [CrossRef]
- Ahmad, M.H.; Sahar, A.; Hitzmann, B. Fluorescence spectroscopy for the monitoring of food processes. Adv. Biochem. Eng. Biotechnol. 2017, 161, 121–152. [Google Scholar]
- Nawrocka, A.; Lamorska, J. Determination of Food Quality by Using Spectroscopic Methods. In Advances in Agrophysical Research; Grundas, S., Stepniewski, A., Eds.; Intechopen: London, UK, 2013; pp. 348–363. [Google Scholar]
- Lin, M.; Rasco, B.A.; Cavinato, A.G.; Al-Holy, M. Infrared (IR) Spectroscopy—Near Infrared Spectroscopy and Mid-Infrared Spectroscopy. In Infrared Spectroscopy for Food Quality Analysis and Control; Sun, D.-W., Ed.; Academic Press: London, UK, 2009; pp. 119–143. [Google Scholar]
- Dufour, E. Principles of Infrared spectroscopy. In Infrared Spectroscopy for Food Quality Analysis and Control; Sun, C., Ed.; Academic Press: London, UK, 2009; pp. 1–27. [Google Scholar]
- Prieto, N.; Pawluczyk, O.; Dugan, M.E.R.; Aalhus, J.L. A Review of the Principles and Applications of Near-Infrared Spectroscopy to Characterize Meat, Fat, and Meat Products. Appl. Spectrosc. 2017, 71, 1403–1426. [Google Scholar] [CrossRef] [Green Version]
- Reich, G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev. 2005, 57, 1109–1143. [Google Scholar] [CrossRef]
- Nelson, D.L. Spectroscopic Methods in Food Analysis, 1st ed.; Franca, A.S., Nollet, L., Eds.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Mendes, E.; Duarte, N. Mid-Infrared Spectroscopy as a Valuable Tool to Tackle Food Analysis: A Literature Review on Coffee, Dairies, Honey, Olive Oil and Wine. Foods 2021, 10, 477. [Google Scholar] [CrossRef]
- Stehle, C.U.; Abuillan, W.; Gompf, B.; Dressel, M. Far-infrared spectroscopy on free-standing protein films under defined temperature and hydration control. J. Chem. Phys. 2012, 136, 075102. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. Raman Spectroscopic Characterization and Analysis of Agricultural and Biological Systems. 2013. Available online: https://dr.lib.iastate.edu/handle/20.500.12876/27208 (accessed on 12 October 2021).
- McCreery, R.L. Calibration and Validation in Raman Spectroscopy for Chemical Analysis; Wiley-Interscience: New York, NY, USA, 2000. [Google Scholar]
- Petersen, M.; Yu, Z.; Lu, X. Application of Raman Spectroscopic Methods in Food Safety: A Review. Biosensors 2021, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Boyaci, I.H.; Temiz, H.T.; Genis, H.E.; Soykut, E.A.; Yazgan, N.N.; Guven, B.; Uysal, R.S.; Bozkurt, A.G.; Ilaslan, K.; Toruna, O.; et al. Dispersive and FT-Raman spectroscopic methods in food analysis. R. Soc. Chem. 2015, 5, 56606–56624. [Google Scholar] [CrossRef]
- Khuwijitjaru, P.; Boonyapisomparn, K.; Huck, C.W. Near-infrared spectroscopy with linear discriminant analysis for green ‘Robusta’ coffee bean sorting. Int. Food Res. J. 2020, 27, 287–294. [Google Scholar]
- Tugnolo, A.; Giovenzana, V.; Malegori, C.; Oliveri, P.; Casson, A.; Curatitoli, M.; Guidetti, R.; Beghi, R. A reliable tool based on near-infrared spectroscopy for the monitoring of moisture content in roasted and ground coffee: A comparative study with thermogravimetric analysis. Food Control 2021, 130, 108312. [Google Scholar] [CrossRef]
- Santos, J.R.; Viegas, O.; Páscoa, R.N.M.J.; Ferreira, I.M.P.L.V.O.; Rangel, A.O.S.S.; Lopes, J.A. In-line monitoring of the coffee roasting process with near infrared spectroscopy: Measurement of sucrose and colour. Food Chem. 2016, 208, 103–110. [Google Scholar] [CrossRef]
- Correia, R.M.; Tosato, F.; Domingos, E.; Rodrigues, R.R.T.; Aquino, L.F.M.; Filgueiras, P.R.; Lacerda, V.; Romão, W. Portable near infrared spectroscopy applied to quality control of Brazilian coffee. Talanta 2018, 176, 59–68. [Google Scholar] [CrossRef] [PubMed]
- DeAraújo, T.K.L.; Nobrega, R.O.; Fernandes, D.D.S.; DeAraújo, M.C.U.; Diniz, P.H.G.D.; DaSilva, E.C. Non-destructive authentication of Gourmet ground roasted coffees using NIR spectroscopy and digital images. Food Chem. 2021, 364, 130452. [Google Scholar] [CrossRef]
- Okubo, N.; Kurata, Y. Nondestructive Classification Analysis of Green Coffee Beans by Using Near-Infrared Spectroscopy. Foods 2019, 8, 82. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Long, Y.; Chen, Y.; Huang, Y.; Tang, L.; Gan, B.; Yu, Q.; Xie, J. Fast determination of lipid and protein content in green coffee beans from different origins using NIR spectroscopy and chemometrics. J. Food Compos. Anal. 2021, 102, 104055. [Google Scholar] [CrossRef]
- Giraudo, A.; Grassi, S.; Savorani, F.; Gavoci, G.; Casiraghi, E.; Geobaldo, F. Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis. Food Control 2019, 99, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Marquetti, I.; Link, J.V.; Lemes, A.L.G.; Scholz, M.B.S.; Valderrama, P.; Bona, E. Partial least square with discriminant analysis and near infrared spectroscopy for evaluation of geographic and genotypic origin of arabica coffee. Comput. Electron. Agric. 2016, 121, 313–319. [Google Scholar] [CrossRef]
- Santos, J.R.; Lopo, M.; Rangel, A.O.S.S.; Lopes, J.A. Exploiting near infrared spectroscopy as an analytical tool for on-line monitoring of acidity during coffee roasting. Food Control 2016, 60, 408–415. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Salva, T.J.G.; Silvarolla, M.B. Prediction of a wide range of compounds concentration in raw coffee beans using NIRS, PLS and variable selection. Food Control 2021, 125, 107967. [Google Scholar] [CrossRef]
- Ribeiro, J.S.; Ferreira, M.M.C.; Salva, T.J.G. Chemometric models for the quantitative descriptive sensory analysis of arabica coffee beverages using near infrared spectroscopy. Talanta 2011, 83, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.P.; Franca, A.S.; Oliveira, S.L.; Irudayaraj, J.; Ileleji, K. Fourier transform infrared spectroscopy and near infrared spectroscopy for the quantification of defects in roasted coffees. Talanta 2015, 134, 379–386. [Google Scholar] [CrossRef]
- Scholz, M.B.S.; Kitzberger, C.S.G.; Pereira, L.F.P.; Davrieux, F.; Pot, D.; Charmetantd, P.; Leroy, T. Application of near infrared spectroscopy for green coffee biochemical phenotyping. J. Near Infrared Spectrosc. 2014, 22, 411–421. [Google Scholar] [CrossRef]
- Alessandrini, L.; Romani, S.; Pinnavaia, G.; Rosa, M.D. Near infrared spectroscopy: An analytical tool to predict coffee roasting degree. Anal. Chim. Acta 2008, 625, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.B.; Marcheafave, G.G.; Bruns, R.E.; Scarminio, I.S.; Zeraik, M.L. Spectroscopic and Chromatographic Fingerprints for Discrimination of Specialty and Traditional Coffees by Integrated Chemometric Methods. Food Anal. Methods 2020, 13, 2204–2212. [Google Scholar] [CrossRef]
- Craig, A.P.; Botelho, B.G.; Oliveira, L.S.; Franca, A.S. Mid infrared spectroscopy and chemometrics as tools for the classification of roasted coffees by cup quality. Food Chem. 2018, 245, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Fioresi, D.B.; Pereira, L.L.; Oliveira, E.C.S.; Moreira, T.R.; Ramos, A.C. Mid infrared spectroscopy for comparative analysis of fermented arabica and robusta coffee. Food Control 2021, 121, 107625. [Google Scholar] [CrossRef]
- Flores-Valdez, M.; Meza-Márquez, O.G.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics. Foods 2020, 9, 851. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Liu, F.; He, Y. Mid-Infrared Spectroscopy for Coffee Variety Identification: Comparison of Pattern Recognition Methods. J. Spectrosc. 2016, 2016, 7927286. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Discrimination between Immature and Mature Green Coffees by Attenuated Total Reflectance and Diffuse Reflectance Fourier Transform Infrared Spectroscopy. J. Food Sci. 2011, 76, 2011. [Google Scholar] [CrossRef]
- Link, J.V.; Lemes, A.L.G.; Marquetti, I.; Scholz, M.B.S.; Bona, E. Geographical and genotypic classification of arabica coffee using Fourier transform infrared spectroscopy and radial-basis function networks. Chemom. Intell. Lab. Syst. 2014, 135, 150–156. [Google Scholar] [CrossRef]
- Dias, R.C.E.; Valderrama, P.; Março, P.H.; Scholz, M.B.S.; Edelmann, M.; Yeretzian, C. Quantitative assessment of specific defects in roasted ground coffee via infrared-photoacoustic spectroscopy. Food Chem. 2018, 255, 132–138. [Google Scholar] [CrossRef]
- Bona, E.; Marquetti, I.; Link, J.V.; Makimori, G.Y.F.; da Costa Arca, V.; Lemes, A.L.G.; Ferreira, J.M.G.; dos Santos Scholz, M.B.; Valderrama, P.; Poppi, R.J. Support vector machines in tandem with infrared spectroscopy for geographical classification of green arabica coffee. LWT–Food Sci. Technol. 2017, 76, 330–336. [Google Scholar] [CrossRef]
- Rubayiza, A.B.; Meurens, M. Chemical Discrimination of Arabica and Robusta Coffees by Fourier Transform Raman Spectroscopy. J. Agric. Food Chem. 2005, 53, 4654–4659. [Google Scholar] [CrossRef]
- Keidel, A.; Stetten, D.; Rodrigues, C.; Guas, C.; Hildebrandt, P. Discrimination of Green Arabica and Robusta Coffee Beans by Raman Spectroscopy. J. Agric. Food Chem. 2010, 58, 11187–11192. [Google Scholar] [CrossRef]
- Wermelinger, T.; D’Ambrosio, L.; Klopprogge, B.; Yeretzian, C. Quantification of the Robusta Fraction in a Coffee Blend via Raman Spectroscopy: Proof of Principle. J. Agric. Food Chem. 2011, 59, 9074–9079. [Google Scholar] [CrossRef]
- Figueiredo, L.P.; Borém, F.M.; Almeida, M.R.; Oliveira, L.F.C.; Oliveira, L.F.C.; Alves, A.P.C.; Santos, C.M.; Rios, P.A. Raman spectroscopy for the differentiation of Arabic coffee genotypes. Food Chem. 2019, 288, 262–267. [Google Scholar] [CrossRef]
- Sunarharum, W.B.; Williams, D.J.; Smyth, H.E. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 2014, 62, 315–325. [Google Scholar] [CrossRef]
- Bertone, E.; Venturello, A.; Giraudo, A.; Pellegrino, G.; Geobaldo, F.G. Simultaneous determination by NIR spectroscopy of the roasting degree and Arabica/Robusta ratio in roasted and ground coffee. Food Control 2016, 59, 683–689. [Google Scholar] [CrossRef]
- Pires, F.C.; Pereira, R.G.F.A.; Baqueta, M.R.; Valderrama, P.; Rocha, R.A. Near-infrared spectroscopy and multivariate calibration as an alternative to the Agtron to predict roasting degrees in coffee beans and ground coffees. Food Chem. 2021, 365, 130471. [Google Scholar] [CrossRef] [PubMed]
- Catelani, T.A.; Santos, J.R.; Páscoa, R.N.M.J.; Pezza, L.; Pezza, H.R.; Lopes, J.A. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study. Talanta 2018, 179, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi-Najafabadi, H.; Leardi, R.; Oliveri, P.; Casolino, M.C.; Jalali-Heravi, M.; Lanteri, S. Detection of addition of barley to coffee using near infrared spectroscopy and chemometric techniques. Talanta 2012, 99, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Winkler-Moser, J.K.; Singh, M.; Rennick, K.A.; Bakota, E.L.; Jham, G.; Liu, S.X.; Vaughn, S.F. Detection of Corn Adulteration in Brazilian Coffee (Coffea arabica) by Tocopherol Profiling and Near-Infrared (NIR) Spectroscopy. J. Agric. Food Chem. 2015, 63, 10662–10668. [Google Scholar] [CrossRef]
- Brondi, A.M.; Torres, C.; Garcia, J.S.; Trevisan, M. Differential scanning calorimetry and infrared spectroscopy combined with chemometric analysis to the determination of coffee adulteration by corn. J. Braz. Chem. Soc. 2017, 28, 1308–1314. [Google Scholar] [CrossRef]
- Santos, J.R.; Sarraguça, M.C.; Rangel, A.O.S.S.; Lopes, J.A. Evaluation of green coffee beans quality using near infrared spectroscopy: A quantitative approach. Food Chem. 2012, 135, 1828–1835. [Google Scholar] [CrossRef]
- Chen, S.; Chang, C.; Ou, C.; Lien, C. Detection of Insect Damage in Green Coffee Beans Using VIS-NIR Hyperspectral Imaging. Remote Sens. 2020, 12, 2348. [Google Scholar] [CrossRef]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S. Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chem. 2012, 132, 1368–1374. [Google Scholar] [CrossRef] [Green Version]
- Baqueta, M.R.; Coqueiro, A.; Valderrama, P. Brazilian coffee blends: A simple and fast method by near-infrared spectroscopy for the determination of the sensory attributes elicited in professional coffee cupping. J. Food Sci. 2019, 84, 1247–1255. [Google Scholar] [CrossRef]
- Chang, Y.T.; Hsueh, M.C.; Hung, S.P.; Lu, J.M.; Peng, J.H.; Chen, S.F. Prediction of specialty coffee flavors based on near-infrared spectra using machine and deep-learning methods. J. Sci. Food Agric. 2021, 101, 4705–4714. [Google Scholar] [CrossRef]
- Tolessa, K.; Rademaker, M.; Baets, B.D.; Boeckx, P. Prediction of specialty coffee cup quality based on near infrared spectra of green coffee beans. Talanta 2016, 150, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Arboleda, E.R. Discrimination of civet coffee using near infrared spectroscopy and artificial neural network. Int. J. Adv. Comput. Res. 2018, 8, 324–334. [Google Scholar] [CrossRef]
- Belchior, V.; Botelho, B.G.; Oliveira, L.S.; Franca, A.S. Attenuated Total Reflectance Fourier Transform Spectroscopy (ATR-FTIR) and chemometrics for discrimination of espresso coffees with different sensory characteristics. Food Chem. 2019, 273, 178–185. [Google Scholar] [CrossRef]
- Esteban-Díez, I.; González-Sáiz, J.M.; Saenz-Gonzalez, J.M.; Pizarro, C.I. Coffee varietal differentiation based on near infrared spectroscopy. Talanta 2007, 71, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Medina, J.; Caro Rodríguez, D.; Arana, V.A.; Bernal, A.; Esseiva, P.; Wist, J. Comparison of Attenuated Total Reflectance MidInfrared, Near Infrared, and 1H-Nuclear Magnetic Resonance Spectroscopies for the Determination of Coffee’s Geographical Origin. Int. J. Anal. Chem. 2017, 2017, 7210463. [Google Scholar] [CrossRef] [Green Version]
- Luna, A.S.; DaSilva, A.P.; Alves, E.A.; Rocha, R.B.; Lima, I.C.A.; DeGois, J.S. Evaluation of chemometric methodologies for the classification of Coffea canephora cultivars via FTNIR spectroscopy and direct sample analysis. Anal. Methods 2017, 9, 4255. [Google Scholar] [CrossRef]
- Wang, N.; Fu, Y.; Lim, L. Feasibility Study on Chemometric Discrimination of Roasted Arabica Coffees by Solvent Extraction and Fourier Transform Infrared Spectroscopy. J. Agric. Food Chem. 2011, 59, 3220–3226. [Google Scholar] [CrossRef]
- Dankowska, A.; Domagała, A.; Kowalewski, W. Quantification of Coffea arabica and Coffea canephora var. robusta concentration in blends by means of synchronous fluorescence and UV-Vis spectroscopies. Talanta 2017, 172, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Escobar, M.M.; Torres, A.E.L.; Rodriguez, N.J.M. Non-Destructive Prediction of Moisture Content of Philippine Coffea arabica and Coffea liberica Green Beans Using Locally-Developed NIR Spectroscopy Instrument. Mindanao J. Sci. Technol. 2020, 18, 208–223. [Google Scholar]
- Kyaw, E.M.; Budiastra, I.W.; Samsudin; Sutrisno. Estimation of moisture content in Liberica coffee by using near infrared spectroscopy. IOP Conf. Ser. Earth Environ. Sci. 2020, 542, 012013. [Google Scholar] [CrossRef]
- Macedo, L.L.; Araújo, C.D.S.; Vimercati, W.C.; Hein, P.R.G.; Pimenta, C.J.; Saraiva, S.H. Evaluation of chemical properties of intact green coffee beans using near-infrared spectroscopy. J. Sci. Food Agric. 2020, 101, 3500–3507. [Google Scholar] [CrossRef]
- Liang, N.; Lu, X.; Hu, Y.; Kitts, D.D. Application of Attenuated Total Reflectance-Fourier Transformed Infrared (ATR-FTIR) Spectroscopy To Determine the Chlorogenic Acid Isomer Profile and Antioxidant Capacity of Coffee Beans. J. Agric. Food Chem. 2016, 64, 681–689. [Google Scholar] [CrossRef]
- Weldegebreal, B.; Redi-Abshiro, M.; Chandravanshi, B.S. Development of new analytical methods for the determination of caffeine content in aqueous solution of green coffee beans. Chem. Cent. J. 2017, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Yisak, H.; Redi-Abshiro, M.; Chandravanshi, B.S. New fluorescence spectroscopic method for the simultaneous determination of alkaloids in aqueous extract of green coffee beans. Chem. Cent. J. 2018, 12, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bressanello, D.; Liberto, E.; Cordero, C.; Rubiolo, P.; Pellegrino, G.; Ruosi, M.R.; Bicchi, C. Coffee aroma: Chemometric comparison of the chemical information provided by three different samplings combined with GC–MS to describe the sensory properties in cup. Food Chem. 2017, 214, 218–226. [Google Scholar] [CrossRef]
- Alcantara, G.M.R.N.; Dresch, D.; Melchert, W.R. Use of non-volatile compounds for the classification of specialty and traditional Brazilian coffees using principal component analysis. Food Chem. 2020, 360, 130088. [Google Scholar] [CrossRef] [PubMed]
- Toci, A.T.; Farah, A.; Pezza, H.R.; Pezza, L. Coffee Adulteration: More than Two Decades of Research. Crit. Rev. Anal. Chem. 2016, 46, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Forchetti, D.A.P.; Poppi, R.J. Detection and Quantification of Adulterants in Roasted and Ground Coffee by NIR Hyperspectral Imaging and Multivariate Curve Resolution. Food Anal. Methods 2020, 13, 44–49. [Google Scholar] [CrossRef]
- Franca, A.S.; Oliveira, L.S.; Mendonc, J.C.F.; Silva, X.A. Physical and chemical attributes of defective crude and roasted coffee beans. Food Chem. 2005, 90, 84–89. [Google Scholar] [CrossRef]
Wavenumber (cm−1) or Wavelength (nm) | Vibrational Modes | Associated Compounds | References | |
---|---|---|---|---|
NIR | ||||
4750 and 6900 and 5200 cm−1 | - | Proteins and water, respectively | [29] | |
4200 to 4400 cm−1 | - | Carbohydrates | ||
1450 nm | 1st overtone of O–H stretching | Water | [30] | |
1100 to 1250 nm | 2nd overtone of C–H stretching | Carbohydrates, quinic acid, and lipids | ||
1300–1350 nm | - | Caffeine | ||
1550 nm | - | CGA, carbohydrates, and amino acids | ||
5000–5200 cm−1 and 6800–7200 cm−1 | - | Water | [31] | |
4000–5000 cm−1 | C-H bonds vibrations | CGA, carbohydrates, proteins, and trigonelline | ||
900–1000 nm | 3rd overtone of the CH, CH2, and CH3 groups | Ferulic and coumaric acids | [32] | |
1400–1500 nm | 1st overtone of the OH functional group | CGA, water, and carbohydrates | ||
6750–6950 cm−1 and 5100–5200 cm−1 | 1st overtone of O–H stretching and O–H deformation + O–H stretching combination bands | Water | [33] | |
5680–5850 and 4760 cm−1 | - | Lipids and CGA, proteins, caffeine, and carbohydrates, respectively | ||
1850–1950 nm | 1st overtone of C=O bonds vibrations | CGA, proteins, lipids, caffeine, water, and carbohydrates | [34] | |
4000–12,000 cm−1 | Overtone and combination bands of the NH, C–H, SH and OH bonds | Proteins (amino acids) and lipids | [35] | |
4000–5600 cm−1 | C-H bonds vibrations | Caffeine, fatty acids, amino acids, and lignin | [36] | |
8200–8300 cm−1 | C-H bonds vibrations | Fatty acids, amino acids, and lignin | ||
10,000, 6800, 4400 and 4800 cm−1 | O-H and C-H bond vibrations | Cellulose | ||
1410, 1742, 1904, and 2318 nm | - | Lipids | [37] | |
1410, 1728, 1904, 2306 and 2348 nm | - | Caffeine | ||
1436, 1880, 2312, 2324 and 2350 nm | - | CGA | ||
5000–5200 and 6800–7200 cm−1 | - | Water | [38] | |
5325, 5140, 5075, 5410–5385 and 4980–5000 cm−1 | 1st overtone and combination band of C=O and O-H bonds, 2nd overtone of C=O | Carbohydrates, proteins, and organic acids | ||
1868 nm | - | 5-CQA | [39] | |
1741 and 2252 nm 2383–2488, 1977–2266, 1638–1793 and 1297–1474 nm | - | Caffeine | ||
2306–2312 and 1218–1242 nm | C–H + CC combination bands and 2nd overtone of C–H, respectively | Sucrose and other carbohydrates | [40] | |
1472–1478 nm | 1st overtone of N–H | Phenols and CGA | ||
2128–2132 and 2190–2192 nm | O–H 1st overtone and combination bands of N–H | Proteins and CGA | ||
1706–1714, 2436–2475 and 2480–2488 nm | Combination bands of C–H + C–H and C–H + CC and C-H 1st overtone | Lipids | ||
1440–1480 and 1930–1950 nm | O–H stretching 1st overtone and combination band of O–H deformation + O–H stretching | Water | [41] | |
1715–1760 and 2300–2350 nm | - | Lipids | ||
1180–1262 nm | - | Caffeine and cellulose | [5] | |
1480–1882 nm and 1896–2180 nm | - | CGA, caffeine, lipids, proteins, and carbohydrates | ||
2260–2498 nm | - | Caffeine, carbohydrates, and protein | ||
1208 nm | C-H stretching 2nd overtone | Sucrose, lipids, and amino acids | [42] | |
1800–2000, 1400, 2200 and 2300 nm | 1st overtones of O–H and C-H | Water | ||
Around 1500 nm | 1st overtone of aromatic structures C–H | Phenolic compounds (CGA) | ||
1700 and 1800 nm | C-H 1st overtone | Lipids, caffeine, and carbohydrates | ||
2300–2400 nm | C-H + CH2 combination bands | Lipids | ||
6896 and 5154 cm−1 | O-H deformation and stretching combination bands | Water | [43] | |
4100–4400 cm−1 | - | CGA and quinic acid | ||
MIR/ FTIR | ||||
2840–2940 cm−1 | Stretching of CH bonds in CH2 and CH3 groups | Lipids and caffeine | [41] | |
1747 cm−1 | C=O stretch of aliphatic ester groups | Lipids | ||
900–1400 cm−1 | - | Carbohydrates | ||
1740 and 1660 cm−1 | Stretching of C=O and C=C bonds | Carbohydrates and lipids, respectively | [44] | |
1600, 1700, 1260, 1160 and 1060 cm−1 | - | CGA | ||
1330 and 600–1300 cm−1 | - | Trigonelline and Pyridine | ||
1020 cm−1 | - | Carbohydrates | ||
2922, 2852 and 1743 cm−1 | Asymmetric and symmetric stretching of CH2, and stretching of C=O, respectively | Lipids | [45] | |
1153 and 950–1130 cm−1 | - | Polysaccharides and other carbohydrates, respectively | ||
1643 cm−1 | C=O stretching vibrations | Caffeine | ||
650–900 cm−1 | - | Proteins and amino acids | [46] | |
1000 and 1300 cm−1 | - | Carbohydrates, CGA, proteins, amino acids | ||
1700–1750 and 1600–1680 cm−1 | C=O stretching | Carbohydrates and lipids | ||
3470 cm−1 | O-H stretching | CGA and Water | [47] | |
3008 and 2855–2920 cm−1 | Stretching of the C=C and C-H bond, respectively | Lipids and polysaccharides (lignin), respectively | ||
1746 and 1704 cm−1 | Stretching and vibration of the ester group OC=O and carbonyl group C=O | Quinic acids and fatty acids, respectively | ||
1608 cm−1 | Vibrations of the C-N group | Trigonelline and caffeine | ||
1745 cm−1 | - | Triglyceride | [48] | |
835, 911 and 1061 cm−1 | - | Polysaccharides | ||
1268, 1291, 1322, 1337, 1374, 1396, 1398, 1406, 1418, and 1499 cm−1 | - | Proteins and organic acids | ||
1656 and 2800–3000 cm−1 | - | Caffeine | [49] | |
1743–1741 and 1543 cm−1 | - | Lipids and caffeine or/and trigonelline | ||
1744, 1654, and 1603 cm−1 | - | Lipid and caffeine | [50] | |
1285, 900–1200 and 1400–1500 cm−1 | - | CGA and carbohydrates | ||
804, 991, and 1020 cm−1 | - | Carbohydrates | [10] | |
1661, 1744 and 2922 cm−1 | - | Caffeine, triglycerides and lipids, respectively | ||
1600–1650 and 1150–1450 cm−1 | - | Caffeine and CGA, respectively | [8] | |
600–1700 cm−1 | - | CGA, carbohydrates, and trigonelline | ||
3356 and 1067 cm−1 | - | CGA and pyruvic acid, pyridine, and quinic acid, respectively | [51] | |
1000 and 1750 cm−1 | - | Caffeine and trigonelline | ||
1744 and 1285 cm−1 | - | Esters and CGA, respectively | [52] | |
1600–1650 and 900–1200, 1400–1500 cm−1 | - | Caffeine and carbohydrates, respectively | ||
Raman | ||||
1500 and 1567 and 1478 cm−1 | C=C stretch vibrations | Cafestol and Kahweol, respectively | [53] | |
1600 cm −1 | Phenyl ring stretch | [11] | ||
1630 cm−1 | C=C stretch vibrations | |||
1120 cm−1 | CH and COH bending vibration | Lipids, CGA, and proteins | ||
1200 cm−1 | Phenyl ring bending vibration | |||
1604 and 1630 cm−1 | Aromatic and C=C stretching | Polyphenols, e.g., CGA | [54] | |
1690 and 1656 cm−1 | Amide I band stretching (structures of R-helix and β-sheet) | Proteins | ||
1479 and 1567 cm−1 | - | Kahweol | ||
1630 and 1605 cm−1 | C=C ethylenic stretch and Phenyl ring stretch vibrations, respectively | CGA | [14] | |
1000–1750 cm−1 | - | CGA | ||
2934 and 2905 cm−1 | CH2 asymmetric and symmetric vibrations | Lipids | ||
2700–3050 cm−1 | - | Lipid bands | ||
1507 and 1485 and 1570 cm−1 | - | Cafestol and Kahweol, respectively | [55] | |
1606, 1637, 1657 and 1680 cm−1 | C=C and C=O bonds vibration | CGA | [56] | |
1567 and 1478 cm−1 | - | Kahweol | ||
2900 cm−1 | C-H bond symmetric and asymmetric stretching | Fatty acids | ||
1441, 1304 and 1265 cm−1 | C=C deformation vibrations of CH, CH2, and CH3 bonds | Fatty acids | ||
1502 and 1442 cm−1 | - | Cafestol and lipids, respectively |
Application | Aim | Spectroscopy Technique | Multivariate Analysis | References |
---|---|---|---|---|
Coffee roasting and monitoring | Determine roast degree (based on color, acidity, cracks) | NIR | PLS | [6,7,58,59] |
Online acidity monitoring during coffee roasting | NIR | PLS | [38] | |
In-line coffee roasting process monitoring | NIR | PLS | [31] | |
Real-time detection of faults during coffee roasting process | NIR | PCA | [60] | |
Adulterants and defective beans detection | Identify and quantify adulterants (corn, barley, peels, sticks, coffee husks, soy, ort, rice, sticks, soil, and robusta) in roasted-ground coffee | NIR | PCA, PLS, MCR-ALS and SIMCA | [32,47,61,62] |
Detect and quantify adulterations of roasted-ground coffee with corn | FTIR/MIR | PCA and PLS | [63] | |
Quantify defective beans (black, immature, dark sour and light sour) in roasted coffees | FTIR/MIR and NIR | PLS and Elastic net | [41] | |
Discriminate between defective (sour, immature, insect damaged, and black) and nondefective green coffee beans | NIR | PCA, PLS, CEM-SVM and CNN | [64,65] | |
Discrimination of mature, sour, black, and immature green coffee beans | FTIR/MIR | AHC, LDA and PCA | [49,66] | |
Evaluation of defects in roasted-ground coffee | MIR/FTIR-PAS | PLS-DA | [51] | |
Prediction of specialty coffee quality and sensory attributes of coffee | Determine sensory attributes of coffee | NIR | PLS, SNM, DCNN | [40,67,68] |
Prediction of specialty coffee quality and its discrimination from ordinary coffee | NIR | PLS, FFBPANN, CACHAS | [33,69,70] | |
Prediction of coffee cup quality | FTIR/MIR | PCA, PLS-DA | [45,71] | |
Quantitative evaluation of sensory characteristics of specialty coffees and its discrimination | FTIR/MIR | PLS, FA | [8,44] | |
Discrimination of specialty coffee | Fluorescence | PCA and SIMCA | [12] | |
Discrimination of coffee based on species, variety, and geographical origin | Distinguish between robusta and arabica coffee species and their varieties | NIR | Potential function class-modelling, PCA, SOM, SIMCA, PLS-DA and SVM | [72,73,74] |
Discriminate coffee of different origin | NIR | PLS-DA, SNM, SIMCA, ANN (SOM) | [5,34,36,37,52,73] | |
Coffee variety identification | FTIR/MIR | ELM, BPNN, RBFNN, RVM, SIMCA and SVM | [48] | |
Discriminate coffee of different origin | FTIR/MIR | PLS, SVM, RBFs, MLP, SIMCA | [50,52,73,75] | |
Discrimination of coffee species (arabica and robusta) and cultivars | Raman | PCA, MDA, QDA, RDA, PLS–DA, SIMCA, LDA | [11,14,53,54,55,56] | |
Geographical and phenotypic discrimination of coffees | Fluorescence | PARAFAC, NPLS-DA, UPLS-DA, MLR and LDA | [13,76] | |
Prediction of coffee chemical composition | Predict moisture content, soluble solids, total reducing sugars, lipids, proteins, trigonelline, 5-CQA, caffeine, and sucrose content of coffee | NIR | PLS | [9,30,35,39,42,77,78,79] |
Predict CGA isomer composition and caffeine content | FTIR/MIR | PLS | [80,81] | |
Determine trigonelline and caffeine content | Fluorescence | - | [81,82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munyendo, L.; Njoroge, D.; Hitzmann, B. The Potential of Spectroscopic Techniques in Coffee Analysis—A Review. Processes 2022, 10, 71. https://doi.org/10.3390/pr10010071
Munyendo L, Njoroge D, Hitzmann B. The Potential of Spectroscopic Techniques in Coffee Analysis—A Review. Processes. 2022; 10(1):71. https://doi.org/10.3390/pr10010071
Chicago/Turabian StyleMunyendo, Leah, Daniel Njoroge, and Bernd Hitzmann. 2022. "The Potential of Spectroscopic Techniques in Coffee Analysis—A Review" Processes 10, no. 1: 71. https://doi.org/10.3390/pr10010071
APA StyleMunyendo, L., Njoroge, D., & Hitzmann, B. (2022). The Potential of Spectroscopic Techniques in Coffee Analysis—A Review. Processes, 10(1), 71. https://doi.org/10.3390/pr10010071