Nano-Modified Meta-Aramid Insulation Paper with Advanced Thermal, Mechanical, and Electrical Properties
Abstract
:1. Introduction
2. Thermal Aging Experiment
2.1. Sample Preparation
2.2. Experiment Results Analysis
2.2.1. Moisture Content
2.2.2. Mechanical Properties
2.2.3. Breakdown Field Strength
3. Molecular Dynamics Simulations
3.1. Model Establishment
3.2. Parameter Calculation Results Analysis
3.2.1. Glass Transition Temperature
3.2.2. Mechanical Parameters
3.2.3. Dielectric Constant
3.2.4. Cohesive Energy Density and Solubility Parameters
4. Conclusions
- The macroscopic experimental results showed that, during the aging process, the moisture content of the k-PPSQ modified paper was lower than that of the b-PPSQ modified paper and ordinary insulation paper, which improves its thermal aging resistance. The tensile strength of the k-PPSQ modified paper with thermal aging was higher than that of the b-PPSQ modified paper and ordinary insulation paper, demonstrating a reduced loss of mechanical strength during the aging process. Under an electric field, the addition of k-PPSQ introduced a large number of traps in the interfacial area, which resulted in a reduction of the energy of electrons and increased the breakdown field strength by 5.86% compared with the unmodified material.
- MD simulations showed that the addition of k-PPSQ increased the glass transition temperature of meta-aramid fiber and improved the thermal stability of the aramid insulation paper. The stiffness of the k-PPSQ modified paper was less than the paper modified with b-PPSQ. The hydroxyl groups on the ring-opening system were more likely to enter the dispersed system, facilitating the formation of intermolecular hydrogen bonds, which improved the mechanical properties of the composite. The nano-scale size of k-PPSQ and b-PPSQ resulted in increased contact area and interfacial polarization, which reduced defects at the interface, hindered rotation of the polar polymer chains and side groups in the region, and ultimately improved the dielectric constant of the composites.
- The analysis of intermolecular compatibility showed that because of the nano-scale enhancement, the intermolecular chains of the meta-aramid fibers were more compact, the space for motion was reduced, and the overall motion was restrained. The intimate mixing at the supramolecular level could better transfer stress and prevent the degradation of properties, such as interphase stratification, and increase compatibility between the materials.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, G.F. R&D and application of key technologies for HVDC equipment. Power Syst. Technol. 2012, 36, 1–6. [Google Scholar]
- Wang, Y.; Luo, Y.; Guan, J.; Ding, R. Dielectric properties of epoxy resin impregnated paper insulation in different stages of partial discharge development. Polym. Compos. 2019, 41, 360–368. [Google Scholar] [CrossRef]
- Liao, R.J.; Wang, J.Y.; Yuan, Y. Review on the characteristic of new cellulose insulation paper used in the converter transformer. Trans. China Electrotech. Soc. 2016, 31, 1–15. [Google Scholar]
- Li, S.T.; Xie, D.R.; Qu, G.H.; Yang, L.; Min, D.; Cheng, Y. Tailoring interfacial compatibility and electrical breakdown properties in polypropylene basedcomposites by surface functionalized PPSQ. Appl. Surf. Sci. 2019, 478, 451–458. [Google Scholar] [CrossRef]
- Lei, Q.Q.; Li, S.T. Several important issues and thinking about engineering dielectrics. High Volt. Eng. 2015, 41, 2473–2480. [Google Scholar]
- Lei, Q.Q. Spatiotemporal multilevel structural and motion characteristics of nano-dielectrics and related discussion. In Proceedings of the Xiangshan Science Conferences of Frontiers and Future of Science, Beijing, China, 23–25 June 2011. [Google Scholar]
- Zhou, X.X.; Lu, Z.X.; Liu, Y.M.; Chen, S. Development models and key technologies of future grid in China. Proc. CSEE 2014, 34, 4999–5008. [Google Scholar]
- Tanaka, T.; Montanari, G.C.; Mulhaupt, R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 763–784. [Google Scholar] [CrossRef]
- Li, J.Z.; Zhang, Q.G.; Li, Y. Generation process of impurity bridges in oil-paper insulation under DC voltage. High Volt. Eng. 2016, 42, 3901–3908. [Google Scholar]
- Zhang, F.Z.; Liao, R.J.; Yuan, Y.; Li, Y.; Peng, Q.; Liu, T. Preparation for low-permittivity insulation paper and its breakdown performance. High Volt. Eng. 2012, 38, 691–696. [Google Scholar]
- Du, D.; Tang, C.; Tang, Y.; Yang, L.; Hao, J. Molecular simulation on the mechanical and thermal properties of carbon nanowire modified cellulose insulating paper. Compos. Struct. 2020, 261, 113283. [Google Scholar] [CrossRef]
- Bourbigot, S.; Flambard, X. Heat resistance and flammability of high performance fibres: A review. Fire Mater. 2002, 26, 155–168. [Google Scholar] [CrossRef]
- Awa, B.; Sebaey, T.A.; Yudhanto, A.; Lubineau, G. Post-Impact flexural behavior of carbon-aramid/epoxy hybrid composites—ScienceDirect. Compos. Struct. 2020, 239, 112022. [Google Scholar]
- Tang, C.; Li, X.; Tang, J.Y.; Zeng, J.; Xie, Y.J.; Xiong, F.B. Agglomeration mechanism and restraint measures of SiO2 nanoparticles in meta-aramid fibers doping modification via molecular dynamics simulations. Nanotechnology 2019, 31, 165702. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, L.; Chen, S.; Xie, F.; Qin, P.; Lu, Z. Toward high thermal conductive aramid nanofiber papers: Incorporating hexagonal boron nitride bridged by silver nanoparticles. Polym. Compos. 2021, 42, 1773–1781. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, J.; Zhou, X.S.; Zheng, C.S.; Huang, Y.L.; Chen, X.L.; Du, Y.; Hu, Z.M.; Chen, L.; Liu, Z.F. The study of aramid paper. Pap. Sci. Technol. 2004, 23, 57–59. [Google Scholar]
- Baney, R.H.; Itoh, M.; Sakakibara, A.; Suzuki, T. Silsesquioxanes. Chem. Rev. 1995, 95, 1409–1430. [Google Scholar] [CrossRef]
- Park, E.S.; Ro, H.W.; Nguyen, C.V.; Jaffe, R.L.; Yoon, D.Y. Infrared spectroscopy study of microstructures of poly(silsesquioxane)s. Chem. Mater. 2008, 20, 1548–1554. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Li, J. Preparation of nano poly(phenylsilsesquioxane) spheres and the influence of nano-PPSQ on the thermal stability of poly(methyl methacrylate). J. Therm. Anal. Calorim. 2011, 109, 323–329. [Google Scholar] [CrossRef]
- Li, G.Z.; Wang, L.; Toghiani, H.; Daulton, T.L.; Koyama, A.K.; Pittman, J.C.U. Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends. Macromolecules 2001, 34, 8686–8693. [Google Scholar] [CrossRef]
- Qi, L.; Guo, L.; Teng, Q.; Ye, J.; He, L.; Li, X.; Tuo, X. Polyurethane/polyphenylsilsequiloxane nanocomposite: From waterborne dispersions to coating films. Prog. Org. Coat. 2018, 122, 19–29. [Google Scholar]
- Jiang, Y.; Li, X.; Yang, R. Polycarbonate composites flame-retarded by polyphenylsilsesquioxane of ladder structure. J. Appl. Polym. Sci. 2011, 124, 4381–4388. [Google Scholar] [CrossRef]
- Hong, E.-Y.; Lee, S.-H.; Lee, D.-K.; Choi, S.-S.; Baek, K.-Y.; Hwang, S.-S.; Kwon, O.-P. Polyaniline films doped with ladder-type sulfonated polyphenylsilsesquioxane and unusual dependence of their electrical conductivity on temperature. J. Mater. Chem. 2012, 22, 18151–18155. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Jiang, Y.; Yang, R. Investigations of epoxy resins flame-retarded by phenyl silsesquioxanes of cage and ladder structures. Polym. Degrad. Stab. 2013, 98, 246–254. [Google Scholar] [CrossRef]
- Liao, R.; Sang, F.; Liu, G.; Yang, L. Study on neutral acid and water dissolved in oil for different types of oil-paper insulation compositions of transformers in accelerated ageing tests. Proc. CSEE 2010, 30, 125–131. [Google Scholar]
- Lv, J.; Zhan, H.Y.; Jin, H.C. Power transformer insulation paper: Its properties and insulation aging. China Pulp Pap. 2008, 27, 54–58. [Google Scholar]
- Valiyaveettil, S.; Gans, C.; Klapper, M.; Gereke, R. Synthesis and structural study of poly(isophthalamide)s. Polym. Bull. 1995, 34, 13–19. [Google Scholar] [CrossRef]
- Jain, A.; Vijayan, K. Thermally induced structural changes in nomex fibers. Bull. Mater. Sci. 2002, 25, 341–346. [Google Scholar] [CrossRef]
- Mazeau, K.; Heux, L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J. Phys. Chem. B 2003, 107, 2394–2403. [Google Scholar] [CrossRef]
- Zheng, W.; Xie, J.; Zhang, J.; Tang, C.; Zhao, Z. Influence of polymethylsilsesquioxane content to the thermal stability of meta-aramid fiber insulation paper. Materials 2018, 11, 2317. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tang, C.; Wang, Q.; Li, X.; Hao, J. Selection of optimal polymerization degree and force field in the molecular dynamics simulation of insulating paper cellulose. Energies 2017, 10, 1377. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Zhang, S.; Wang, X.; Hao, J. Enhanced mechanical properties and thermal stability of cellulose insulation paper achieved by doping with melamine-grafted nano-SiO2. Cellulose 2018, 25, 3619–3633. [Google Scholar] [CrossRef]
- Lundgaard, L.E.; Hansen, W.; Ingebrigtsen, S. Ageing of mineral oil impregnated cellulose by acid catalysis. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 540–546. [Google Scholar] [CrossRef]
- Jeyranpour, F.; Alahyarizadeh, G.; Minuchehr, A. The thermo-mechanical properties estimation of fullerene-reinforced resin epoxy composites by molecular dynamics simulation—A comparative study. Polymer 2016, 88, 9–18. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364. [Google Scholar] [CrossRef]
- Wang, X.; Tang, C.; Wang, Q.; Lu, Y.; Liu, X. Thermal stability improvement of polysiloxane-grafted insulating papercellulose in micro-water environment. AIP Adv. 2018, 8, 1050071. [Google Scholar]
- Tang, C.; Li, X.; Li, Z.; Hao, J. Interfacial hydrogen bonds and their influence mechanism on increasing the thermal stability of nano-SiO2-modified meta-aramid fibres. Polymers 2017, 9, 504. [Google Scholar] [CrossRef] [PubMed]
- Yanchun, Y.; Wei, Z.; Jijun, X.; Xiang, G.; Gen, T.; Jian, Z.; Heming, X. Molecular dynamics simulation of binding energies and mechanical properties of energetic systems with four components. Acta Chim. Sin. 2010, 68, 1181–1187. [Google Scholar]
- Fu, Y.Z.; Liu, Y.Q.; Lan, Y.H. Molecular simulation on the glass transition of polypropylene. Polym. Mater. Sci. Eng. 2009, 25, 53–56. [Google Scholar]
- Wu, J.L. Elasticity; Higher Education Press: Beijing, China, 2001. [Google Scholar]
- Nimmanpipug, P.; Tashiro, K.; Maeda, Y.; Rangsiman, O. Factors governing the three-dimensional hydrogen bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds: (1) systematic classification of structures analyzed by the X-ray diffraction method. J. Phys. Chem. B 2002, 106, 6842–6848. [Google Scholar] [CrossRef]
- Villar-Rodil, S.; Paredes, J.I.; Martínez-Alonso, A.; Tascón, J.M.D. Atomic force microscopy and infrared spectroscopy studies of the thermal degradation of nomex aramid fibers. Chem. Mater. 2012, 13, 4297–4304. [Google Scholar] [CrossRef] [Green Version]
- Li, G.L. Organic Silicon Polymer Chemistry, 1st ed.; Science Press: Beijing, China, 1998. [Google Scholar]
- Yang, Z.; Feng, L.; Diao, S.; Feng, S.; Zhang, C. Study on the synthesis and thermal degradation of silicone resin containing silphenylene units. Thermochim. Acta 2011, 521, 170–175. [Google Scholar] [CrossRef]
- Tian, F.; Yang, C.; He, L.; Han, B.; Wang, Y.; Lei, Q. Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite. Rransactions China Electrotech. Soc. 2011, 26, 1–12. [Google Scholar]
- Chen, J.D.; Liu, Z.Y. Dielectric Physics; China Machine Press: Beijing, China, 1988. [Google Scholar]
- Stevens, G.C.; Freebody, N.A.; Hyde, A.; Perrot, F.; Szkoda-Giannaki, I.; Vaughan, A.S.; Virtanen, S.; Baker, P.; Bon, S.; Coles, S.R.; et al. Balanced nanocomposite thermosetting materials for HVDC and AC applications. In Proceedings of the 2015 IEEE Electrical Insulation Conference (EIC), Seattle, WA, USA, 7–10 June 2015; pp. 193–196. [Google Scholar] [CrossRef]
- Ishimoto, K.; Tanaka, T.; Ohki, Y.; Sekiguchi, Y.; Murata, Y.; Gosyowaki, M. Comparison of dielectric properties of low-density polyethylene/MgO composites with different size fillers. In Proceedings of the 2008 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Quebec, QC, Canada, 26–29 October 2008; pp. 208–211. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Tang, F.; Li, J. Characteristics on breakdown performance of polyethylene/silica dioxide nano-composites. In Proceedings of the 2012 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada, 14–17 October 2012; pp. 521–524. [Google Scholar]
- Li, J.; Liang, H.; Xiao, M.; Du, B.; Takada, T. Mechanism of deep trap sites in epoxy/graphene nanocomposite using quantum chemical calculation. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1577–1580. [Google Scholar] [CrossRef]
- Maex, K.; Baklanov, M.R.; Shamiryan, D.; Lacopi, F.; Brongersma, S.H.; Yanovitskaya, Z.S. Low dielectric constant materials for microelectronics. J. Appl. Phys. 2003, 93, 8793–8841. [Google Scholar] [CrossRef]
- Böttcher, C.J.F.; Bordewijk, P. Theory of Electric Polarization, Volume II: Dielectric in Time-Dependent Fields; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Li, C.; Strachan, A. Cohesive energy density and solubility parameter evolution during the curing of thermoset. Polymer 2018, 135, 162–170. [Google Scholar] [CrossRef]
- Chang, K.-S.; Chung, Y.-C.; Yang, T.-H.; Lue, S.J.; Tung, K.-L.; Lin, Y.-F. Free volume and alcohol transport properties of PDMS membranes: Insights of nano-structure and interfacial affinity from molecular modeling. J. Membr. Sci. 2012, 417–418, 119–130. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Gao, L.; Zhang, Q.; Zhong, W.; Sui, G.; Yang, X. Molecular simulation and experimental analysis on thermal and mechanical properties of carbon nanotube/epoxy resin composites with different curing agents at high-low temperature. Polym. Compos. 2017, 39, E945–E954. [Google Scholar] [CrossRef]
323 K | 343 K | 363 K | 383 K | 403 K | 423 K | |
---|---|---|---|---|---|---|
Pure | 0.2714 | 0.2753 | 0.2773 | 0.2850 | 0.2556 | 0.2575 |
b-PPSQ | 0.2346 | 0.2471 | 0.2569 | 0.2423 | 0.2344 | 0.2519 |
k-PPSQ | 0.1369 | 0.1252 | 0.1392 | 0.1471 | 0.1404 | 0.1332 |
323 K | 343 K | 363 K | 383 K | 403 K | 423 K | |
---|---|---|---|---|---|---|
Pure | 0.4599 | 0.8398 | 0.8279 | 1.2232 | 1.2196 | 0.9602 |
b-PPSQ | 1.1545 | 1.0489 | 1.3799 | 1.4322 | 1.3118 | 1.9324 |
k-PPSQ | 2.8777 | 2.8195 | 2.7404 | 2.7958 | 2.9159 | 2.8411 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, X.; Yue, L.; Jiang, K.; Wang, H.; Lai, J.; Xia, H.; Tang, C. Nano-Modified Meta-Aramid Insulation Paper with Advanced Thermal, Mechanical, and Electrical Properties. Processes 2022, 10, 78. https://doi.org/10.3390/pr10010078
Qian X, Yue L, Jiang K, Wang H, Lai J, Xia H, Tang C. Nano-Modified Meta-Aramid Insulation Paper with Advanced Thermal, Mechanical, and Electrical Properties. Processes. 2022; 10(1):78. https://doi.org/10.3390/pr10010078
Chicago/Turabian StyleQian, Xiying, Long Yue, Keruo Jiang, Hongxue Wang, Jingyin Lai, Hailiang Xia, and Chao Tang. 2022. "Nano-Modified Meta-Aramid Insulation Paper with Advanced Thermal, Mechanical, and Electrical Properties" Processes 10, no. 1: 78. https://doi.org/10.3390/pr10010078
APA StyleQian, X., Yue, L., Jiang, K., Wang, H., Lai, J., Xia, H., & Tang, C. (2022). Nano-Modified Meta-Aramid Insulation Paper with Advanced Thermal, Mechanical, and Electrical Properties. Processes, 10(1), 78. https://doi.org/10.3390/pr10010078