Integration of Maintenance Management System Functions with Industry 4.0 Technologies and Features—A Review
Abstract
:1. Introduction
2. Background
2.1. Maintenance Management
2.2. Industry 4.0
2.2.1. Industry 4.0 Technologies
2.2.2. Industry 4.0 Features
3. Research Methodology
3.1. Research Objectives
- How can Industry 4.0 influence maintenance management system functions?
- What assisting tools are used in the integration process within an Industry 4.0 environment?
- What are the impacts of Industry 4.0 features on the different components of a maintenance management system?
3.2. Research Method
4. Maintenance Management in the Context of Industry 4.0
4.1. Aligning Maintenance Management and Industry 4.0 Technologies—Trending Concepts and Integration-Assisting Tools
4.1.1. Predictive Maintenance (PdM)
4.1.2. Maintenance 4.0
4.2. Applications
4.3. Challenges
5. Discussion
6. Conclusions, Limitations, and Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Article | Integration Concept | Industry 4.0 Technologies | Integration-Assisting Tools |
---|---|---|---|
[63] | PdM | AI-ML | Sensory—CM system |
[64] | Digital maintenance | AI-ML | Sensory—CM system |
[65] | Industry 4.0—TPM | - | CMMS/ERP/SCADA |
[66] | Combined PdM | CPS and AI-ML | Sensory—CM system |
[67] | Intelligent PdM | AI-ML | Sensory—Real-time CM system |
[68] | Synchronous production—PdM | AI-ML, big data, and IoT | Real-time CM system |
[69] | Remote maintenance | Augmented reality | Software support |
[70] | Intelligent PdM | CPS, AI-ML, cloud computing, and IoT | Sensory—Real-time CM system |
[71] | Low-cost PdM | AI-ML and CPS | Sensory—Real-time CM system |
[72] | PdM | AI-ML | SCADA and GUI |
[73] | PdM | AI-ML | SCADA and CMMS |
[74] | Low-cost PdM | AI-ML | ERP, DCS, and MES |
[75] | PdM | AI-ML | Sensory—CM system |
[76] | PdM 4.0 | AI-ML and CPS | Sensory—CM system |
[77] | Low-cost PdM | AI-ML | Sensory—CM system |
[78] | PdM 4.0 | AI-ML, big data, and CPS | Sensory—CM system |
[79] | PdM | AI-ML | Real-time CM system |
[80] | PdM | AI-ML | Sensory system and Microsoft Azure |
[81] | PdM | AI-ML and big data | Sensory—CM system |
[82] | PdM | AI-ML | Sensory—CM system |
[83] | PdM | AI-ML | Sensory—CM system |
[84] | PdM | Big data and AI-ML | Sensory—CM system |
[85] | PdM | Big data and AI-ML | CM system |
[86] | Cognitive maintenance | CPS, big data, and AI-ML | Real-time CM system |
[87] | Smart PdM | AI-ML | Real-time CM system |
[88] | Intelligent maintenance | AI-ML, IoT, and big data | Real-time CM system, CMMS, and ERP |
[89] | Intelligent PdM | AI-ML, simulation, and cloud computing | Sensory—CM system |
[90] | Industry 4.0—TPM | - | CMMS/ERP/SCADA |
[91] | Synchronous production—PdM | AI-ML | Real-time CM system |
[92] | Labour support maintenance | Augmented reality and additive manufacturing | Software support |
[93] | Labour support maintenance | Augmented reality | Software support |
[94] | Labour support maintenance | Augmented reality and additive manufacturing | Software support |
[96] | PdM | AI-ML, big data, and IIoT | Real-time CM system |
[96] | PdM | AI-ML | Real-time CM system |
[97] | Intelligent maintenance | AI-ML | Real-time CM system |
[98] | Maintenance 4.0 | - | ERP and CMMS |
[99] | Maintenance 4.0 | - | ERP and CMMS |
[100] | Maintenance 4.0 | Simulation | ERP and CMMS |
[101] | Maintenance decision-making support | CPS and IoT | ERP and CMMS |
[102] | - | AI-ML | GUI, ERP and CMMS |
[103] | Maintenance decision-making support | - | ERP and CMMS |
[104] | - | IoT | CMMS |
[105] | - | AI-ML and CPS | CMMS |
[106] | Maintenance decision-making support | AI-ML and big data | Sensory system |
[107] | Self-maintenance/remote maintenance | Big data, AI-ML, and additive manufacturing | CMMS and software support |
[108] | Smart maintenance | Sensory—CM system | |
[109] | PdM | CPS | Real-time CM system |
[110] | - | - | - |
[111] | - | AI-ML and big data | - |
[112] | - | - | - |
[113] | PdM | - | - |
[114] | PdM | IoT | Real-time CM system |
[115] | PdM | AI-ML and digital twin | Real-time CM system |
[116] | PdM | AI-ML | Sensory—CM system |
References
- Witkowski, K. Internet of Things, Big Data, Industry 4.0—Innovative Solutions in Logistics and Supply Chains Management. Procedia Eng. 2017, 182, 763–769. [Google Scholar] [CrossRef]
- Fraunhofer IPT. Industry 4.0—Connected, Adaptive Production; Fraunhofer IPT: Aachen, Germany, 2016. [Google Scholar]
- Lu, Y. Industry 4.0: A survey on technologies, applications and open research issues. J. Ind. Inf. Integr. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, T.; Zhou, L. Industry 4.0: Towards future industrial opportunities and challenges. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD, Zhangjiajie, China, 15–17 August 2015; pp. 2147–2152. [Google Scholar] [CrossRef]
- Henning, K.; Wolfgang, W.; Johannes, H. Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0. In Proceedings of the 15th International Scientific Conference on Production Engineering—CIM, Vodice, Croatia, 10–13 June 2013. [Google Scholar] [CrossRef]
- Keller, M.; Rosenberg, M.; Brettel, M.; Friederichsen, N. How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective. Int. J. Mech. Aerosp. Ind. Mechatron. Manuf. Eng. 2014, 8, 37–44. [Google Scholar]
- Gilchrist, A. Industry 4.0: The Industrial Internet of Things; Apress: Berkeley, CA, USA, 2016. [Google Scholar]
- The Past and the Future of Industrial Maintenance Management. Available online: https://automation.isa.org/past-and-future-industrial-maintenance-management/ (accessed on 2 February 2021).
- Silvestri, L.; Forcina, A.; Introna, V.; Santolamazza, A.; Cesarotti, V. Maintenance transformation through Industry 4.0 technologies: A systematic literature review. Comput. Ind. 2020, 123, 103335. [Google Scholar] [CrossRef]
- Sherwin, D. A review of overall models for maintenance management. J. Qual. Maint. Eng. 2000, 6, 138–164. [Google Scholar] [CrossRef] [Green Version]
- EN 13306; Maintenance—Maintenance Terminology. European Committee for Standardization: Brussels, Belgium, 2010.
- Birkedal, L.; Møgelberg, R. On the Definition of Maintenance Management. In The Maintenance Management Framework; Springer: London, UK, 2004; pp. 3–10. [Google Scholar]
- Mostafa, S.; Dumrak, J.; Soltan, H. Lean Maintenance Roadmap. Procedia Manuf. 2015, 2, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Duffuaa, S.O.; Raouf, A. Planning and Control of Maintenance Systems; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Tucker, M. Maintenance management. Hydrocarb. Eng. 2006, 11, 35. [Google Scholar] [CrossRef]
- Khan, F.I.; Haddara, M.M. Risk-based maintenance (RBM): A quantitative approach for maintenance/inspection scheduling and planning. J. Loss Prev. Process Ind. 2003, 16, 561–573. [Google Scholar] [CrossRef]
- Arunraj, N.S.; Maiti, J. Risk-based maintenance-Techniques and applications. J. Hazard. Mater. 2007, 142, 653–661. [Google Scholar] [CrossRef]
- Li, G.; Shi, D. Risk-based maintenance schedule of transmission line using multi-objective evolutionary algorithm. In Proceedings of the 2011 IEEE Power Engineering and Automation Conference (PEAM), Wuhan, China, 8–9 September 2011. [Google Scholar] [CrossRef]
- Jardine, A.K.S.; Lin, D.; Banjevic, D. Mechanical Systems and Signal Processing A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 2006, 20, 1483–1510. [Google Scholar] [CrossRef]
- Ben-Daya, M.; Duffuaa, S.O.; Knezevic, J.; Ait-Kadi, D.; Raouf, A. Handbook of Maintenance Management and Engineering; Springer: London, UK, 2009. [Google Scholar]
- Sakib, N.; Wuest, T. Challenges and Opportunities of Condition-based Predictive Maintenance: A Review. Procedia CIRP 2018, 78, 267–272. [Google Scholar] [CrossRef]
- Peng, Y.; Dong, M.; Zuo, M.J. Current status of machine prognostics in condition-based maintenance: A review. Int. J. Adv. Manuf. Technol. 2010, 50, 297–313. [Google Scholar] [CrossRef]
- Thomas, E.; Levrat, E.; Iung, B.; Cocheteux, P. Opportune maintenance and predictive maintenance decision support. In Proceedings of the 13th IFAC Symposium on Information Control Problems in Manufacturing (INCOM 2009), Moscow, Russia, 3–5 June 2009. [Google Scholar]
- Lorenz, M.; Rüßmann, M.; Strack, R.; Lueth, K.L.; Bolle, M. Man and Machine in Industry 4.0; Boston Consulting Group: Boston, MA, USA, 2015; p. 18. [Google Scholar]
- Ansari, F.; Glawar, R.; Nemeth, T. PriMa: A prescriptive maintenance model for cyber-physical production systems. Int. J. Comput. Integr. Manuf. 2019, 32, 482–503. [Google Scholar] [CrossRef] [Green Version]
- di Dio, M.; Iannone, R.; Miranda, S.; Riemma, S. A framework for the choice of the opportunistic maintenance policy in industrial contexts. In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management, Selangor Darul Ehsan, Malaysia, 9–12 December 2014; pp. 1716–1720. [Google Scholar] [CrossRef]
- Day, J.A.; George, L.L. Opportunistic Replacement of Fusion Power System Parts. 1982. Available online: https://www.osti.gov/servlets/purl/5559083 (accessed on 18 October 2022).
- Goyal, D.; Pabla, B.S. Condition based maintenance of machine tools—A review. CIRP J. Manuf. Sci. Technol. 2015, 10, 24–35. [Google Scholar] [CrossRef]
- Zezulka, F.; Marcon, P.; Vesely, I.; Sajdl, O. Industry 4.0—An Introduction in the phenomenon. IFAC-PapersOnLine 2016, 49, 8–12. [Google Scholar] [CrossRef]
- MacDougall, W. Industrie 4.0: Smart Manufacturing for the Future. 2013. Available online: https://www.pac.gr/bcm/uploads/industrie4-0-smart-manufacturing-for-the-future-en.pdf (accessed on 24 August 2022).
- Ibarra, D.; Ganzarain, J.; Igartua, J.I. Business model innovation through Industry 4.0: A review. Procedia Manuf. 2018, 22, 4–10. [Google Scholar] [CrossRef]
- Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Wang, L.; He, J.; Xu, S. The Application of Industry 4.0 in Customized Furniture Manufacturing Industry. In Proceedings of the MATEC Web of Conferences, Zhengzhou, China, 28–30 November 2016. [Google Scholar] [CrossRef] [Green Version]
- Trappey, A.J.C.; Trappey, C.V.; Govindarajan, U.H.; Chuang, A.C.; Sun, J.J. A review of essential standards and patent landscapes for the Internet of Things: A key enabler for Industry 4.0. Adv. Eng. Inform. 2016, 33, 208–229. [Google Scholar] [CrossRef]
- Melo, P.F.S.; Godoy, E.P.; Ferrari, P.; Sisinni, E. Open source control device for industry 4.0 based on RAMI 4.0. Electronics 2021, 10, 869. [Google Scholar] [CrossRef]
- Hankel, M.; Rexroth, B. The reference architectural model industrie 4.0 (rami 4.0). ZVEI 2015, 2, 4–9. [Google Scholar]
- Ge, M.; Bangui, H.; Buhnova, B. Big Data for Internet of Things: A Survey. Future Gener. Comput. Syst. 2018, 87, 601–614. [Google Scholar] [CrossRef]
- Armbrust, M.; Stoica, I.; Zaharia, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; et al. A view of cloud computing. Commun. ACM 2010, 53, 50. [Google Scholar] [CrossRef] [Green Version]
- Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res. 2020, 58, 1927–1949. [Google Scholar] [CrossRef]
- Rodič, B. Industry 4.0 and the New Simulation Modelling Paradigm. Organizacija 2017, 50, 193–207. [Google Scholar] [CrossRef] [Green Version]
- Németh, I.; Kocsis, Á.; Takács, D.; Shaheen, B.W.; Takács, M.; Merlo, A.; Eytan, A.; Bidoggia, L.; Olocco, P. Maintenance schedule optimisation for manufacturing systems. IFAC-PapersOnLine 2020, 53, 319–324. [Google Scholar] [CrossRef]
- Jones, D.; Snider, C.; Nassehi, A.; Yon, J.; Hicks, B. Characterising the Digital Twin: A systematic literature review. CIRP J. Manuf. Sci. Technol. 2020, 29, 36–52. [Google Scholar] [CrossRef]
- Traini, E.; Bruno, G.; D’antonio, G.; Lombardi, F. Machine Learning Framework for Predictive Maintenance in Milling. IFAC-PapersOnLine 2019, 52, 177–182. [Google Scholar] [CrossRef]
- Shaheen, B.; Németh, I. Machine Learning Approach for Degradation Path Prediction Using Different Models and Architectures of Artificial Neural Networks. Period. Polytech. Mech. Eng. 2022, 66, 244–252. [Google Scholar] [CrossRef]
- Jahnke, P. Machine Learning Approaches for Failure Type Detection and Predictive Maintenance. Master’s Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 19 June 2015. [Google Scholar]
- Ak, R.; Li, Y.F.; Vitelli, V.; Zio, E. A genetic algorithm and neural network technique for predicting wind power under uncertainty. Chem. Eng. Trans. 2013, 33, 925–930. [Google Scholar] [CrossRef]
- Javed, K.; Gouriveau, R.; Zemouri, R.; Zerhouni, N.; Javed, K.; Gouriveau, R.; Zemouri, R.; Improving, N.Z.; Javed, K.; Gouriveau, R.; et al. Improving data-driven prognostics by assessing predictability of features. Progn. Health Manag. Soc. 2011, 3, 555–560. [Google Scholar]
- Mahamad, A.K.; Saon, S.; Hiyama, T. Predicting remaining useful life of rotating machinery based artificial neural network. Comput. Math. Appl. 2010, 60, 1078–1087. [Google Scholar] [CrossRef] [Green Version]
- Medjaher, K.; Tobon-Mejia, D.A.; Zerhouni, N. Remaining useful life estimation of critical components with application to bearings. IEEE Trans. Reliab. 2012, 61, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Ramasso, E.; Placet, V.; Gouriveau, R.; Boubakar, L.; Zerhouni, N. Health assessment of composite structures in unconstrained environments using partially supervised pattern recognition tools. In Proceedings of the Annual Conference of the Prognostics and Health Management Society 2012 (PHM 2012), Minneapolis, MN, USA, 23–27 September 2012; pp. 17–27. [Google Scholar]
- Baraldi, P.; Mangili, F.; Zio, E. A Kalman filter-based ensemble approach with application to turbine creep prognostics. IEEE Trans. Reliab. 2012, 61, 966–977. [Google Scholar] [CrossRef]
- Yan, J.; Lee, J. Degradation assessment and fault modes classification using logistic regression. J. Manuf. Sci. Eng. Trans. ASME 2005, 127, 912–914. [Google Scholar] [CrossRef]
- Blanchet, M.; Rinn, T. Industry 4.0: The New Industrial Revolution, How Europe Will Succeed; Operations Strategy Competence Center: Munich, Germany, 2015. [Google Scholar]
- Li, Z.; Wang, K.; He, Y. Industry 4.0—Potentials for Predictive Maintenance. In Proceedings of the International Workshop of Advanced Manufacturing and Automation (IWAMA 2016), Manchester, UK, 10–11 November 2016; pp. 42–46. [Google Scholar] [CrossRef] [Green Version]
- Monostori, L.; Kádár, B.; Bauernhansl, T.; Kondoh, S.; Kumara, S.; Reinhart, G.; Sauer, O.; Schuh, G.; Sihn, W.; Ueda, K. Cyber-physical systems in manufacturing. CIRP Ann. 2016, 65, 621–641. [Google Scholar] [CrossRef]
- Monostori, L. Cyber-Physical Systems. In CIRP Encyclopedia of Production Engineering; The International Academy for Production, Chatti, S., Tolio, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Ansari, F.; Khobreh, M.; Seidenberg, U.; Sihn, W. A problem-solving ontology for human-centered cyber physical production systems. CIRP J. Manuf. Sci. Technol. 2018, 22, 91–106. [Google Scholar] [CrossRef]
- Lee, E.A.; Seshia, S.A. Introducing Embedded Systems: A Cyber-Physical Systems Approach, 2nd ed.; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Hecklau, F.; Galeitzke, M.; Flachs, S.; Kohl, H. Holistic Approach for Human Resource Management in Industry 4.0. Procedia CIRP 2016, 54, 1–6. [Google Scholar] [CrossRef]
- Wang, S.; Wan, J.; Li, D.; Zhang, C. Implementing Smart Factory of Industrie 4.0: An Outlook. Int. J. Distrib. Sens. Netw. 2016, 12, 3159805. [Google Scholar] [CrossRef] [Green Version]
- Almada-Lobo, F. The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). J. Innov. Manag. 2016, 3, 16–21. [Google Scholar] [CrossRef]
- Webster, J.; Watson, R.T. Analysing the past for prepare the future: Writing a review. MIS Q. 2002, 26, xiii–xxiii. [Google Scholar]
- Poor, P.; Basl, J.; Zenisek, D. Predictive Maintenance 4.0 as next evolution step in industrial maintenance development. In Proceedings of the IEEE International Research Conference on Smart Computing and Systems Engineering (SCSE 2019), Colombo, Sri Lanka, 28 March 2019; pp. 245–253. [Google Scholar] [CrossRef]
- Fusko, M.; Rakyta, M.; Krajcovic, M.; Dulina, L.; Gaso, M.; Grznar, P. Basics of designing maintenance processes in industry 4.0. MM Sci. J. 2018, 2018, 2252–2259. [Google Scholar] [CrossRef] [Green Version]
- Tortorella, G.L.; Fogliatto, F.S.; Cauchick-Miguel, P.A.; Kurnia, S.; Jurburg, D. Integration of Industry 4.0 technologies into Total Productive Maintenance practices. Int. J. Prod. Econ. 2021, 240, 108224. [Google Scholar] [CrossRef]
- Ferreira, L.L.; Albano, M.; Silva, J.; Martinho, D.; Marreiros, G.; di Orio, G.; Malo, P.; Ferreira, H. A pilot for proactive maintenance in industry 4.0. In Proceedings of the IEEE International Workshop on Factory Communication Systems (WFCS), Trondheim, Norway, 31 May–2 June 2017. [Google Scholar] [CrossRef] [Green Version]
- Einabadi, B.; Baboli, A.; Ebrahimi, M. Dynamic Predictive Maintenance in industry 4.0 based on real time information: Case study in automotive industries. IFAC-PapersOnLine 2019, 52, 1069–1074. [Google Scholar] [CrossRef]
- Spendla, L.; Kebisek, M.; Tanuska, P.; Hrcka, L. Concept of predictive maintenance of production systems in accordance with industry 4.0. In Proceedings of the IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia, 26–28 January 2017; pp. 405–410. [Google Scholar] [CrossRef]
- Masoni, R.; Ferrise, F.; Bordegoni, M.; Gattullo, M.; Uva, A.E.; Fiorentino, M.; Carrabba, E.; di Donato, M. Supporting Remote Maintenance in Industry 4.0 through Augmented Reality. Procedia Manuf. 2017, 11, 1296–1302. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Cheng, F.T.; Huang, H.C. Developing a factory-wide intelligent predictive maintenance system based on Industry 4.0. Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch’eng Hsuch K’an. J. Chin. Inst. Eng. 2017, 40, 562–571. [Google Scholar] [CrossRef]
- Sezer, E.; Romero, D.; Guedea, F.; MacChi, M.; Emmanouilidis, C. An industry 4.0-enabled low cost predictive maintenance approach for SMEs: A use case applied to a CNC Turning Centre. In Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, 17–20 June 2018; pp. 1–8. [Google Scholar] [CrossRef]
- Kiangala, K.S.; Wang, Z. Initiating predictive maintenance for a conveyor motor in a bottling plant using industry 4.0 concepts. Int. J. Adv. Manuf. Technol. 2018, 97, 3251–3271. [Google Scholar] [CrossRef]
- Bengtsson, M.; Lundström, G. On the importance of combining ‘the new’ with ‘the old’—One important prerequisite for maintenance in Industry 4.0. Procedia Manuf. 2018, 25, 118–125. [Google Scholar] [CrossRef]
- Alarcón, M.; Martínez-García, F.M.; Gómez de León Hijes, F.C. Energy and maintenance management systems in the context of industry 4.0. Implementation in a real case. Renew. Sustain. Energy Rev. 2021, 142, 110841. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Wang, K.S. Intelligent predictive maintenance for fault diagnosis and prognosis in machine centers: Industry 4.0 scenario. Adv. Manuf. 2017, 5, 377–387. [Google Scholar] [CrossRef]
- Sahba, R.; Radfar, R.; Ghatari, A.R.; Ebrahimi, A.P. Development of Industry 4.0 predictive maintenance architecture for broadcasting chain. Adv. Eng. Inform. 2021, 49, 101324. [Google Scholar] [CrossRef]
- Adu-Amankwa, K.; Attia, A.K.A.; Janardhanan, M.N.; Patel, I. A predictive maintenance cost model for CNC SMEs in the era of industry 4.0. Int. J. Adv. Manuf. Technol. 2019, 104, 3567–3587. [Google Scholar] [CrossRef]
- Sang, G.M.; Xu, L.; de Vrieze, P.; Bai, Y.; Pan, F. Predictive Maintenance in Industry 4.0. In ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Ruiz-Sarmiento, J.R.; Monroy, J.; Moreno, F.A.; Galindo, C.; Bonelo, J.M.; Gonzalez-Jimenez, J. A predictive model for the maintenance of industrial machinery in the context of industry 4.0. Eng. Appl. Artif. Intell. 2019, 87, 103289. [Google Scholar] [CrossRef]
- Paolanti, M.; Romeo, L.; Felicetti, A.; Mancini, A.; Frontoni, E.; Loncarski, J. Machine Learning approach for Predictive Maintenance in Industry 4.0. In Proceedings of the 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA 2018), Oulu, Finland, 2–4 July 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Calabrese, M.; Cimmino, M.; Fiume, F.; Manfrin, M.; Romeo, L.; Ceccacci, S.; Paolanti, M.; Toscano, G.; Ciandrini, G.; Carrotta, A.; et al. SOPHIA: An event-based IoT and machine learning architecture for predictive maintenance in industry 4.0. Information 2020, 11, 202. [Google Scholar] [CrossRef] [Green Version]
- Anh, D.T.; Dabrowski, K.; Skrzypek, K. The Predictive Maintenance Concept in the Maintenance Department of the ‘industry 4.0’ Production Enterprise. Found. Manag. 2018, 10, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Kiangala, K.S.; Wang, Z. An Effective Predictive Maintenance Framework for Conveyor Motors Using Dual Time-Series Imaging and Convolutional Neural Network in an Industry 4.0 Environment. IEEE Access 2020, 8, 121033–121049. [Google Scholar] [CrossRef]
- Yan, J.; Meng, Y.; Lu, L.; Li, L. Industrial Big Data in an Industry 4.0 Environment: Challenges, Schemes, and Applications for Predictive Maintenance. IEEE Access 2017, 5, 23484–23491. [Google Scholar] [CrossRef]
- Sahal, R.; Breslin, J.G.; Ali, M.I. Big data and stream processing platforms for Industry 4.0 requirements mapping for a predictive maintenance use case. J. Manuf. Syst. 2020, 54, 138–151. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Dai, G.H.; Wang, K.S. Framework and case study of cognitive maintenance in Industry 4.0. Front. Inf. Technol. Electron. Eng. 2019, 20, 1493–1504. [Google Scholar] [CrossRef]
- Moreira, E.E.; Alves, F.S.; Martins, M.; Ribeiro, G.; Pina, A.; Aguiam, D.E.; Sotgiu, E.; Fernandes, E.P.; Gaspar, J. Industry 4.0: Real-time monitoring of an injection molding tool for smart predictive maintenance. In Proceedings of the IEEE Symposium on Emerging Technologies and Factory Automation (ETFA), Vienna, Austria, 8–11 September 2020; pp. 1209–1212. [Google Scholar] [CrossRef]
- Nordal, H.; El-Thalji, I. Modeling a predictive maintenance management architecture to meet industry 4.0 requirements: A case study. Syst. Eng. 2021, 24, 34–50. [Google Scholar] [CrossRef]
- Teoh, Y.K.; Gill, S.S.; Parlikad, A.K. IoT and Fog Computing based Predictive Maintenance Model for Effective Asset Management in Industry 4.0 using Machine Learning. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Hardt, F.; Kotyrba, M.; Volna, E.; Jarusek, R. Innovative approach to preventive maintenance of production equipment based on a modified TPM methodology for industry 4.0. Appl. Sci. 2021, 11, 6953. [Google Scholar] [CrossRef]
- Alves, F.F.; Ravetti, M.G. Hybrid proactive approach for solving maintenance and planning problems in the scenario of Industry 4.0. IFAC-PapersOnLine 2020, 53, 216–221. [Google Scholar] [CrossRef]
- Ceruti, A.; Marzocca, P.; Liverani, A.; Bil, C. Maintenance in aeronautics in an Industry 4.0 context: The role of Augmented Reality and Additive Manufacturing. J. Comput. Des. Eng. 2019, 6, 516–526. [Google Scholar] [CrossRef]
- Scurati, G.W.; Gattullo, M.; Fiorentino, M.; Ferrise, F.; Bordegoni, M.; Uva, A.E. Converting maintenance actions into standard symbols for Augmented Reality applications in Industry 4.0. Comput. Ind. 2018, 98, 68–79. [Google Scholar] [CrossRef]
- Konstantinidis, F.K.; Kansizoglou, I.; Santavas, N.; Mouroutsos, S.G.; Gasteratos, A. Marma: A mobile augmented reality maintenance assistant for fast-track repair procedures in the context of industry 4.0. Machines 2020, 8, 88. [Google Scholar] [CrossRef]
- Tanuska, P.; Spendla, L.; Kebisek, M.; Duris, R.; Stremy, M. Smart anomaly detection and prediction for assembly process maintenance in compliance with industry 4.0. Sensors 2021, 21, 2376. [Google Scholar] [CrossRef]
- Fernandes, J.; Reis, J.; Melão, N.; Teixeira, L.; Amorim, M. The role of industry 4.0 and bpmn in the arise of condition-based and predictive maintenance: A case study in the automotive industry. Appl. Sci. 2021, 11, 3438. [Google Scholar] [CrossRef]
- Bourezza, E.M.; Mousrij, A. Towards a Platform to Implement an Intelligent and Predictive Maintenance in the Context of Industry 4.0; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1193. [Google Scholar]
- Jasiulewicz-Kaczmarek, M.; Legutko, S.; Kluk, P. Maintenance 4.0 technologies—New opportunities for sustainability driven maintenance. Manag. Prod. Eng. Rev. 2020, 11, 74–87. [Google Scholar] [CrossRef]
- Kumar, U.; Galar, D. Maintenance in the Era of Industry 4.0: Issues and Challenges. In Quality, IT and Business Operations; Kapur, P.K., Kumar, U., Kumar Verma, A., Eds.; Springer Proceedings in Business and Economics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 231–250. [Google Scholar] [CrossRef]
- Giacotto, A.; Marques, H.C.; Barreto, E.A.P.; Martinetti, A. The need for ecosystem 4.0 to support maintenance 4.0: An aviation assembly line case. Appl. Sci. 2021, 8, 3333. [Google Scholar] [CrossRef]
- Caterino, M.; Fera, M.; Macchiaroli, R.; Manco, P. A maintenance policy selection method enhanced by industry 4.0 technologies. In Proceedings of the XXIV Summer School “Francesco Turco”—Industrial Systems Engineering, Brescia, Italy, 11–13 September 2019; pp. 60–66. [Google Scholar]
- Pavlu, J.; Legat, V.; Ales, Z. Estimation trends in the maintenance of a manufacturing equipment relation to the industry 4.0 challenge. In Proceedings of the 7th International Conference on Trends in Agricultural Engineering 2019 (TAE), Prague, Czech Republic, 17–20 September 2019; pp. 435–440. [Google Scholar]
- García, S.G.; García, M.G. Industry 4.0 implications in production and maintenance management: An overview. Procedia Manuf. 2019, 41, 415–422. [Google Scholar] [CrossRef]
- Compare, M.; Baraldi, P.; Zio, E. Challenges to IoT-Enabled Predictive Maintenance for Industry 4.0. IEEE Internet Things J. 2020, 7, 4585–4597. [Google Scholar] [CrossRef]
- Dalzochio, J.; Kunst, R.; Pignaton, E.; Binotto, A.; Sanyal, S.; Favilla, J.; Barbosa, J. Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Comput. Ind. 2020, 123, 103298. [Google Scholar] [CrossRef]
- Bousdekis, A.; Lepenioti, K.; Apostolou, D.; Mentzas, G. Decision making in predictive maintenance: Literature review and research agenda for industry 4.0. IFAC-PapersOnLine 2019, 52, 607–612. [Google Scholar] [CrossRef]
- Contreras, J.D.; Garcia, J.I.; Gomez, J. Maintenance Management of an Additive Manufacturing System Based on the I4.0 Model. Commun. Comput. Inf. Sci. 2021, 1431, 299–311. [Google Scholar] [CrossRef]
- di Bona, G.; Cesarotti, V.; Arcese, G.; Gallo, T. Implementation of Industry 4.0 technology: New opportunities and challenges for maintenance strategy. Procedia Comput. Sci. 2021, 180, 424–429. [Google Scholar] [CrossRef]
- Lambán, M.P.; Morella, P.; Royo, J.; Sánchez, J.C. Using industry 4.0 to face the challenges of predictive maintenance: A key performance indicators development in a cyber physical system. Comput. Ind. Eng. 2022, 171, 108400. [Google Scholar] [CrossRef]
- Jasiulewicz-Kaczmarek, M.; Antosz, K.; Zhang, C.; Waszkowski, R. Assessing the Barriers to Industry 4.0 Implementation from a Maintenance Management Perspective—Pilot Study Results. IFAC-PapersOnLine 2022, 55, 223–228. [Google Scholar] [CrossRef]
- Kunju, F.k.F.; Naveed, N.; Anwar, M.N.; Haq, M.I.U. Production and maintenance in industries: Impact of industry 4.0. Ind. Robot. 2022, 49, 461–475. [Google Scholar] [CrossRef]
- Tortorella, G.; Saurin, T.A.; Fogliatto, F.S.; Tlapa, D.; Moyano-Fuentes, J.; Gaiardelli, P.; Seyedghorban, Z.; Vassolo, R.; Cawley, A.F.M.; Sunder, M.V.; et al. The impact of Industry 4.0 on the relationship between TPM and maintenance performance. J. Manuf. Technol. Manag. 2022, 33, 489–520. [Google Scholar] [CrossRef]
- Toumi, H.; Meddaoui, A.; Hain, M. The Influence of Predictive Maintenance in Industry 4.0: A Systematic Literature Review. In Proceedings of the 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, 3–4 March 2022. [Google Scholar] [CrossRef]
- Sicard, B.; Alsadi, N.; Spachos, P.; Ziada, Y.; Gadsden, S.A. Predictive Maintenance and Condition Monitoring in Machine Tools: An IoT Approach. In Proceedings of the 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, Canada, 1–4 June 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Mubarak, A.; Asmelash, M.; Azhari, A.; Alemu, T.; Mulubrhan, F.; Saptaji, K. Digital Twin Enabled Industry 4.0 Predictive Maintenance Under Reliability-Centred Strategy. In Proceedings of the 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), Tiruchirappalli, India, 16–18 February 2022. [Google Scholar] [CrossRef]
- Abidi, M.H.; Mohammed, M.K.; Alkhalefah, H. Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing. Sustainability 2022, 14, 3387. [Google Scholar] [CrossRef]
- Abellan-Nebot, J.V.; Subirón, F.R. A review of machining monitoring systems based on artificial intelligence process models. Int. J. Adv. Manuf. Technol. 2010, 47, 237–257. [Google Scholar] [CrossRef]
- Noor, H.M.; Mazlan, S.A.; Amrin, A. Computerized Maintenance Management System in IR4.0 Adaptation—A State of Implementation Review and Perspective. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 1051, p. 012019. [Google Scholar] [CrossRef]
- Franciosi, C.; Voisin, A.; Miranda, S.; Iung, B. Integration of I4.0 technologies with maintenance processes: What are the effects on sustainable manufacturing? IFAC-PapersOnLine 2020, 53, 1–6. [Google Scholar] [CrossRef]
- de Paula Ferreira, W.; Armellini, F.; de Santa-Eulalia, L.A. Simulation in industry 4.0: A state-of-the-art review. Comput. Ind. Eng. 2020, 149, 106868. [Google Scholar] [CrossRef]
Research Categories | ||||
---|---|---|---|---|
Article | Integration Concepts | Applications | Challenges | Approach/Method |
[63] | X | Framework | ||
[64] | X | Case study | ||
[65] | X | Case study | ||
[66] | X | X | Framework | |
[67] | X | X | Case study | |
[68] | X | Framework | ||
[69] | X | Prototype | ||
[70] | X | Framework | ||
[71] | X | X | Case study | |
[72] | X | Framework/experimental design | ||
[73] | X | X | X | Framework |
[74] | X | X | Case study | |
[75] | X | Framework | ||
[76] | X | X | Framework | |
[77] | X | X | Framework | |
[78] | X | Framework | ||
[79] | X | X | Framework | |
[80] | X | X | Framework | |
[81] | X | Framework | ||
[82] | X | X | Framework/case study | |
[83] | X | X | Framework/experimental design | |
[84] | X | X | Framework/case study | |
[85] | X | X | Framework | |
[86] | X | Framework/case study | ||
[87] | X | X | Case study | |
[88] | X | X | X | Framework |
[89] | X | Framework/simulation | ||
[90] | X | X | Framework | |
[91] | X | Framework | ||
[92] | X | X | Framework/prototype | |
[93] | X | Prototype | ||
[94] | X | X | Prototype/case study | |
[95] | X | X | Framework | |
[96] | X | X | Case study | |
[97] | X | X | Framework | |
[98] | X | X | Conceptual | |
[99] | X | X | Conceptual | |
[100] | X | X | Framework/simulation/case study | |
[101] | X | Framework | ||
[102] | X | Conceptual | ||
[103] | X | Conceptual | ||
[104] | X | Conceptual | ||
[105] | X | Conceptual | ||
[106] | X | Conceptual | ||
[107] | X | Framework/prototype | ||
[108] | X | Conceptual | ||
[109] | X | Case study | ||
[110] | X | Survey | ||
[111] | X | Survey | ||
[112] | X | Survey | ||
[113] | X | Conceptual | ||
[114] | X | X | Framework | |
[115] | X | Framework | ||
[116] | X | X | X | Framework/case study |
Article | Automotive Industry | Chemicals, Oil, and Gas | Machining | Aircraft Industry | Railway Transportation and Wind Energy | Services |
---|---|---|---|---|---|---|
[66] | X | |||||
[67] | X | |||||
[71] | X | |||||
[73] | X | |||||
[74] | X | |||||
[76] | X | |||||
[77] | X | |||||
[79] | X | |||||
[80] | X | |||||
[82] | X | |||||
[83] | X | |||||
[85] | X | |||||
[87] | X | |||||
[88] | X | |||||
[90] | X | |||||
[92] | X | |||||
[94] | X | |||||
[95] | X | |||||
[96] | X | |||||
[97] | X | |||||
[100] | X | |||||
[114] | X | |||||
[116] | X | X | ||||
Total | 23 |
Article | Challenges | |||
---|---|---|---|---|
Economical | Technical | Organisational | Sustainability | |
[73] | X | |||
[84] | X | |||
[88] | X | |||
[98] | X | X | X | X |
[99] | X | X | ||
[102] | X | |||
[104] | X | X | ||
[105] | X | |||
[110] | X | X | ||
[111] | X | |||
[112] | X | |||
[113] | X | |||
[116] | X | |||
Total | 13 |
Industry 4.0 Technologies | AI | CPS | Big Data | IoT | Simulation | Cloud Computing | Additive Manufacturing | AR | ||
---|---|---|---|---|---|---|---|---|---|---|
Maintenance Management System Functions | ||||||||||
Planning | Strategic system alliances | X | X | X | X | |||||
Maintenance strategies | X | X | X | X | X | X | X | |||
Maintenance load forecasting | X | X | ||||||||
Maintenance capacity | X | X | X | X | X | |||||
Maintenance organisation | X | X | ||||||||
Maintenance scheduling | X | X | X | X | X | |||||
Organising | Job design | X | X | |||||||
Standards | X | |||||||||
Work measurement | X | X | ||||||||
Project management | X | X | X | X | X | |||||
Controlling | Work control | X | X | |||||||
Material control | X | X | ||||||||
Inventory and spare parts control | X | X | ||||||||
Cost control | X | X | ||||||||
Managing for quality | X | X | X |
Industry 4.0 Features | Impact on Maintenance Management Systems |
---|---|
Interconnection | Real-time measurements and data flow along a value chain Enhanced coordination of all contributors to the maintenance tasks Enhanced responsiveness to maintenance actions and failure modes Involvement of machine manufacturers in the maintenance process by improving the software functions released in new updates and operational recommendations |
Interoperability | Standard communication modules between machines and maintenance systems Standard reporting for maintenance activities at the micro-level (component, machine, and system) and macro-level (enterprise) Compatibility with different software systems, such as ERP, CMMS, and SCADA |
Integration | Involvement of all departments within a company in the maintenance activities and vice versa: involvement of the maintenance department in the activities of the other departments (vertical integration) Involvement of all the stakeholders of the product value chain in the maintenance activities and vice versa (horizontal integration) Involvement of all the stakeholders of the product lifecycle in the maintenance activities: warehouses, production, product design, and equipment manufacturers (end-to-end integration) Responsive maintenance activities in terms of spare part replacement and resource allocation |
Decentralisation | Self-maintenance and self-adaptation capabilities of machines Unstable operational conditions can be handled smoothly Machines can communicate and coordinate operational data independently |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaheen, B.W.; Németh, I. Integration of Maintenance Management System Functions with Industry 4.0 Technologies and Features—A Review. Processes 2022, 10, 2173. https://doi.org/10.3390/pr10112173
Shaheen BW, Németh I. Integration of Maintenance Management System Functions with Industry 4.0 Technologies and Features—A Review. Processes. 2022; 10(11):2173. https://doi.org/10.3390/pr10112173
Chicago/Turabian StyleShaheen, Basheer Wasef, and István Németh. 2022. "Integration of Maintenance Management System Functions with Industry 4.0 Technologies and Features—A Review" Processes 10, no. 11: 2173. https://doi.org/10.3390/pr10112173
APA StyleShaheen, B. W., & Németh, I. (2022). Integration of Maintenance Management System Functions with Industry 4.0 Technologies and Features—A Review. Processes, 10(11), 2173. https://doi.org/10.3390/pr10112173