Synthesis and Characterization of Lignin-Incorporated Carboxymethyl Cellulose (CMC) Films from Oil Palm Lignocellulosic Waste
Abstract
:1. Introduction
2. Materials and Methods
- Alkalization: 1 g of α-cellulose was mixed with 1 g of NaOH (50 wt%) and 10 mL distilled water under constant stirring for 1.5 h.
- Etherification: The mixture from alkalization was added to a separately prepared mixture (which contained 1 g of 50 wt% NaOH, 1.17 g chloroacetic acid, and 35 mL ethanol (95–97 wt%)). The combined mixture was covered with aluminum foil and heated in an oil bath at 75 °C for 4 h, under stirring at 200 rpm.
- Neutralization and filtration: After cooling down to room temperature, the solution mixture was neutralized with 50 wt% hydrochloric acid and filtered, followed by being rinsed with ethanol at least 3 times.
- Drying: The residue was collected and dried in an oven at 105 °C for more than 4 h until a constant mass was obtained.
- CMC: The dried residue was collected as the CMC product, which was stored in a desiccator to reduce the amount of moisture when it was not used in the preparation of CMC film.
3. Results and Discussions
3.1. Properties of Pretreated DLF
3.2. Properties of Lignin/CMC Films
3.2.1. Optical and UV Blocking Properties
3.2.2. FTIR Spectra Measurement
3.2.3. Water Vapor Permeability (WVP) Test
3.2.4. Contact Angle Measurement
3.2.5. SEM Imaging
3.2.6. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista. Annual Production of Plastics Worldwide from 1950 to 2020. 2022. Available online: https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/ (accessed on 9 May 2022).
- Ritchie, H.; Roser, M. Plastic Pollution. Our World in Data. 2018. Available online: https://ourworldindata.org/plastic-pollution (accessed on 9 May 2022).
- Michelin, M.; Marques, A.M.; Pastrana, L.M.; Teixeira, J.A.; Cerqueira, M.A. Effect of organosolv lignin incorporation on physicochemical and antioxidant properties. J. Food Eng. 2020, 285, 110107. [Google Scholar] [CrossRef]
- Gupta, H.; Kumar, H.; Kumar, M.; Gehlaut, A.K.; Gaur, A.; Sachan, S.; Park, J.W. Synthesis of biodegradable films obtained from rice husk and sugarcane bagasse to be used as food packaging material. Environ. Eng. Res. 2020, 25, 506–514. [Google Scholar] [CrossRef]
- Kontogiorgos, V. Stabilisers. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: Oxford, UK, 2022; pp. 689–694. [Google Scholar]
- Rahman, M.S.; Mondal, H.M.I.; Yeasmin, M.S.; Sayeed, M.A.; Hossain, M.A.; Ahmed, M.B. Conversion of Lignocellulosic Corn Agro-Waste into Cellulose Derivative and Its Potential Application as Pharmaceutical Excipient. Processes 2020, 8, 711. [Google Scholar] [CrossRef]
- Klunklin, W.; Jantanasakulwong, K.; Phimolsiripol, Y.; Leksawasdi, N.; Seesuriyachan, P.; Chaiyaso, T.; Insomphun, C.; Phongthai, S.; Jantrawut, P.; Sommano, S.R.; et al. Synthesis, Characterization, and Application of Carboxymethyl Cellulose from Asparagus Stalk End. Polymers 2020, 13, 81. [Google Scholar] [CrossRef]
- Pushpamalar, V.; Langford, S.J.; Ahmad, M.; Lim, Y.Y. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr. Polym. 2006, 64, 312–318. [Google Scholar] [CrossRef]
- Rachtanapun, P.; Luangkamin, S.; Tanprasert, K.; Suriyatem, R. Carboxymethyl cellulose film from durian rind. LWT Food Sci. Technol. 2012, 48, 52–58. [Google Scholar] [CrossRef]
- Haleem, N.; Arshad, M.; Shahid, M.; Tahir, M.A. Synthesis of carboxymethyl cellulose from waste of cotton ginning industry. Carbohydr. Polym. 2014, 113, 249–255. [Google Scholar] [CrossRef]
- Mondal, M.I.H.; Yeasmin, M.S.; Rahman, M.S. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. Int. J. Biol. Macromol. 2015, 79, 144–150. [Google Scholar] [CrossRef]
- Karataş, M.; Arslan, N. Flow behaviours of cellulose and carboxymethyl cellulose from grapefruit peel. Food Hydrocoll. 2016, 58, 235–245. [Google Scholar] [CrossRef]
- Nguyen, T.M.N.; Huu, D.T.; Vinh, H.T.; Thanh, T.N. Chemical Engineering Transactions Effects of Xanthan Gum, Carboxymethyl Cellulose, And Gum Arabic on The Properties Of Bean Powder-Based Biofilms. Chem. Eng. Trans. 2021, 89, 607–612. [Google Scholar]
- Sahin, U. An easy and accurate method for determining degree of substitution on carboxymethylated cotton fabric. Tekst. Konfeksiyon 2018, 28, 118–124. [Google Scholar]
- Suota, M.J.; da Silva, T.A.; Zawadzki, S.F.; Sassaki, G.L.; Hansel, F.A.; Paleologou, M.; Ramos, L.P. Chemical and structural characterization of hardwood and softwood LignoForce™ lignins. Ind. Crop. Prod. 2021, 173, 114138. [Google Scholar] [CrossRef]
- Katahira, R.; Elder, T.J.; Beckham, G.T. Chapter 1 A Brief Introduction to Lignin Structure. In Lignin Valorization: Emerging Approaches; The Royal Society of Chemistry: London, UK, 2018; pp. 1–20. [Google Scholar]
- Haqiqi, M.T.; Bankeeree, W.; Lotrakul, P.; Pattananuwat, P.; Punnapayak, H.; Ramadhan, R.; Kobayashi, T.; Amirta, R.; Prasongsuk, S. Antioxidant and UV-Blocking Properties of a Carboxymethyl Cellulose–Lignin Composite Film Produced from Oil Palm Empty Fruit Bunch. ACS Omega 2021, 6, 9653–9666. [Google Scholar] [CrossRef] [PubMed]
- Law, P.G.; Sebran, N.H.; Zawawi, A.Z.; Hussain, A.S. Optimization Study of Biomass Hydrogenation to Ethylene Glycol Using Response Surface Methodology. Processes 2020, 8, 588. [Google Scholar] [CrossRef]
- Hidayat, M.; Aqilah, N.A.; Winata, A. Pretreatment of Oil Palm Empty Fruit Bunch using Caustic Soda Solution for Lignin Isolation. J. Appl. Sci. Eng. 2022, 25, 1025–1030. [Google Scholar]
- Mousavioun, P.; Doherty, W.O.S. Chemical and thermal properties of fractionated bagasse soda lignin. Ind. Crops Prod. 2010, 31, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Shui, T.; Feng, S.; Yuan, Z.; Kuboki, T.; Xu, C.C. Highly efficient organosolv fractionation of cornstalk into cellulose and lignin in organic acids. Bioresour. Technol. 2016, 218, 953–961. [Google Scholar] [CrossRef]
- Shui, T.; Feng, S.; Chen, G.; Li, A.; Yuan, Z.; Shui, H.; Kuboki, T.; Xu, C. Synthesis of sodium carboxymethyl cellulose using bleached crude cellulose fractionated from cornstalk. Biomass Bioenergy 2017, 105, 51–58. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Othman, N.E.A.; Ismail, F.; Aziz, A.A.; Wahab, N.A. Preparation and Characterization of Palm-Based Sodium Carboxymethyl Cellulose for Application in Food Additive. University of Florida. 2021. Available online: https://biointerfaceresearch.com/wp-content/uploads/2021/02/20695837115.1305313063.pdf (accessed on 9 May 2022).
- Easson, M.; Villalpando, A.; Condon, B.A. Absorbent Properties of Carboxymethylated Fiber, Hydroentangled Nonwoven and Regenerated Cellulose: A Comparative Study. J. Eng. Fibers Fabr. 2017, 12, 408. [Google Scholar] [CrossRef] [Green Version]
- Dong, D. Kraft Lignin and Investigation of Pulping Effects on Pulp Yield, Lignin Molecular Mass and Lignin Content of Black Liquor with a Central Composite Pulping Design; University of Florida: Gainesville, FL, USA, 1993. [Google Scholar]
- Alen, R.; Hartus, T. UV spectrophotometric determination of lignin from alkaline pulping liquors. Cellul. Chem. Technol. 1988, 22, 613–618. [Google Scholar]
- Medina, J.D.C.; Woiciechowski, A.; Zandona Filho, A.; Noseda, M.D.; Kaur, B.S.; Soccol, C.R. Lignin preparation from oil palm empty fruit bunches by sequential acid/alkaline treatment—A biorefinery approach. Bioresour. Technol. 2015, 194, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Gaugler, E.C.; Radke, W.; Vogt, A.P.; Smith, D.A. Molar mass determination of lignins and characterization of their polymeric structures by multi-detector gel permeation chromatography. J. Anal. Sci. Technol. 2021, 12, 30. [Google Scholar] [CrossRef]
- Mishra, V.; Kumar, R. Graft copolymerization of Carboxymethylcellulose: An overview. Trends Carbohydr. Res. 2012, 4, 1–17. [Google Scholar]
- Zawawi, A.Z.; Gaik, L.P.; Sebran, N.H.; Othman, J.; Hussain, A.S. An optimisation study on biomass delignification process using alkaline wash. Biomass Convers. Biorefin. 2018, 8, 59–68. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in biomass. In Laboratory Analytical Procedure (LAP); National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Ahmed, N. A novel optimization method for preparing carboxymethyl cellulose with higher yield from wheat straw. J. Chem. Biol. Phys. Sci. 2018, 8, 444–460. [Google Scholar]
- Zhang, H.; Fu, S.; Chen, Y. Basic understanding of the color distinction of lignin and the proper selection of lignin in color-depended utilizations. Int. J. Biol. Macromol. 2020, 147, 607–615. [Google Scholar] [CrossRef]
- Sadeghifar, H.; Ragauskas, A. Lignin as a UV Light Blocker—A Review. Polymers 2020, 12, 1134. [Google Scholar] [CrossRef]
- Skulcova, A.; Majova, V.; Kohutova, M.; Grosik, M.; Sima, J.; Jablonsky, M. UV/Vis Spectrometry as a Quantification Tool for Lignin Solubilized in Deep Eutectic Solvents. BioResources 2017, 12, 2017. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Lee, E.; Choe, E. Light effects on lipid oxidation, antioxidants, and pigments in dried laver (Porphyra) during storage. Food Sci. Biotechnol. 2014, 23, 701–709. [Google Scholar] [CrossRef]
- Ahmed, M.; Pickova, J.; Ahmad, T. Oxidation of Lipids in Foods. Sarhad J. Agric. 2016, 32, 230–238. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Y.; Qian, Y.; Qiu, X.; Ren, Y.; Yang, D. Reduction of lignin color via one-step UV irradiation. Green Chem. 2016, 18, 695–699. [Google Scholar] [CrossRef]
- Zhang, H.; Bai, Y.; Yu, B.; Liu, X.; Chen, F. A practicable process for lignin color reduction: Fractionation of lignin using methanol/water as a solvent. Green Chem. 2017, 19, 5152–5162. [Google Scholar] [CrossRef]
- Lee, S.C.; Yoo, E.; Lee, S.H.; Won, K. Preparation and Application of Light-Colored Lignin Nanoparticles for Broad-Spectrum Sunscreens. Polymers 2020, 12, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.; Rehman, I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Guo, T.; Sun, K.; Jin, Y.; Gu, F.; Xiao, H. Lignin Redistribution for Enhancing Barrier Properties of Cellulose-Based Materials. Polymers 2019, 11, 1929. [Google Scholar] [CrossRef]
- Yang, W.; Qi, G.; Kenny, J.M.; Puglia, D.; Ma, P. Effect of Cellulose Nanocrystals and Lignin Nanoparticles on Mechanical, Antioxidant and Water Vapour Barrier Properties of Glutaraldehyde Crosslinked PVA Films. Polymers 2020, 12, 1364. [Google Scholar] [CrossRef]
- Chen, L.; Tang, C.Y.; Ning, N.Y.; Wang, C.Y.; Fu, Q.; Zhang, Q. Preparation and Properties of Chitosan/Lignin Composite Films. Chin. J. Polym. Sci. 2009, 27, 739–746. [Google Scholar] [CrossRef]
- Wang, S.; Shen, Q.; Guo, C.; Guo, H. Comparative Study on Water Vapour Resistance of Poly(lactic acid) Films Prepared by Blending, Filling and Surface Deposit. Membranes 2021, 11, 915. [Google Scholar] [CrossRef]
- Siracusa, V. Food Packaging Permeability Behaviour: A Report. Int. J. Polym. Sci. 2012, 2012, 302029. [Google Scholar] [CrossRef]
- Li, J.; Lai, L.; Wu, L.; Severtson, S.J.; Wang, W.J. Enhancement of Water Vapor Barrier Properties of Biodegradable Poly(butylene adipate-co-terephthalate) Films with Highly Oriented Organomontmorillonite. ACS Sustain. Chem. Eng. 2018, 6, 6654–6662. [Google Scholar] [CrossRef]
- Rhim, J.-W.; Hong, S.I. Wetting properties of biopolyester films prepared by thermo-compression method. Food Sci. Biotechnol. 2007, 16, 234–237. [Google Scholar]
- Maximova, N.; Österberg, M.; Laine, J.; Stenius, P. The wetting properties and morphology of lignin adsorbed on cellulose fibres and mica. Colloids Surf. A Physicochem. Eng. Asp. 2004, 239, 65–75. [Google Scholar] [CrossRef]
- Chau, T.T.; Bruckard, W.J.; Koh, P.T.L.; Nguyen, A.V. A review of factors that affect contact angle and implications for flotation practice. Adv. Colloid Interface Sci. 2009, 150, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Dou, B.; Dupont, V.; Williams, P.T.; Chen, H.; Ding, Y. Thermogravimetric kinetics of crude glycerol. Bioresour. Technol. 2009, 100, 2613–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parit, M.; Saha, P.; Davis, V.A.; Jiang, Z. Transparent and Homogenous Cellulose Nanocrystal/Lignin UV-Protection Films. ACS Omega 2018, 3, 10679–10691. [Google Scholar] [CrossRef] [PubMed]
- Hornung, A.; Stenzel, F.; Grunwald, J. Biochar—Just a Black Matter Is Not Enough. Biomass Convers. Biorefin. 2021, in press. [Google Scholar] [CrossRef]
- Moussa, I.; Khiari, R.; Moussa, A.; Belgacem, M.N.; Mhenni, M.F.; Belgacem, M.N.; Mhenni, M.F. Preparation and Characterization of Carboxymethyl Cellulose with a High Degree of Substitution from Agricultural Wastes. Fibers Polym. 2019, 20, 933–943. [Google Scholar] [CrossRef]
Literature WN/cm−1 | WN/cm−1 | Band Assignment |
---|---|---|
3000−3800 | 3300 | Stretching mode of aromatics and aliphatic −OH group |
2800−2940 | 2920 | Anti-symmetrical Stretching of −CH (in CH2 and CH3) |
2800−2940 | 2875 | Stretching of −CH (CH3) |
1651 | Broad shoulder at 1651 | Amide I |
1624 | 1600 | Stretching of −COO− |
1548 | - | Amide II |
1500 | 1513 | Peaks for aromaticity (C=C aromatic skeletal vibrations stretching of the benzene ring in lignin) |
1422 | 1422 | Stretching of −COO− of salt; C−H deformation in guaicyl |
1354 | 1368 | Bending of −OH |
1320 | 1320 | In plane deformation of C−H (in CH2 group) |
1280 | 1280 | in plane bending −OH |
1226−1220 | 1220 | syringyl and guaicyl −CO bond |
1196 | 1198 | Stretching of −COH |
1190−950 | 1160, 1112, 1030 | C−O and C−H vibrations from aliphatic −CH2 or phenol −OH bonds |
883, 920 | 910 | 1,4-beta glycoside of cellulose or symmetric (C−O−C) stretching vibrations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, C.-L.; Othman, J.B. Synthesis and Characterization of Lignin-Incorporated Carboxymethyl Cellulose (CMC) Films from Oil Palm Lignocellulosic Waste. Processes 2022, 10, 2205. https://doi.org/10.3390/pr10112205
Song C-L, Othman JB. Synthesis and Characterization of Lignin-Incorporated Carboxymethyl Cellulose (CMC) Films from Oil Palm Lignocellulosic Waste. Processes. 2022; 10(11):2205. https://doi.org/10.3390/pr10112205
Chicago/Turabian StyleSong, Cai-Li, and Jofry B. Othman. 2022. "Synthesis and Characterization of Lignin-Incorporated Carboxymethyl Cellulose (CMC) Films from Oil Palm Lignocellulosic Waste" Processes 10, no. 11: 2205. https://doi.org/10.3390/pr10112205
APA StyleSong, C. -L., & Othman, J. B. (2022). Synthesis and Characterization of Lignin-Incorporated Carboxymethyl Cellulose (CMC) Films from Oil Palm Lignocellulosic Waste. Processes, 10(11), 2205. https://doi.org/10.3390/pr10112205