An Enhanced Evaporation Rate Water-Cycle Algorithm for Global Optimization
Abstract
:1. Introduction
- ErWCA is enhanced by embedding local escape operator and two other control-randomization operators in the updating phase and using the control-randomization operator.
- EErWCA is tested using 29 CEC 2017 and compared with the classical and eight other algorithms.
- Three different engineering problems are used to prove the effectiveness of the proposed algorithm in solving constrained problems.
2. Related Works
3. Evaporation Rate Water-Cycle Algorithm
Mathematical Formulation
4. Proposed Algorithm EErWCA
Local Escaping Operator (LEO)
Algorithm 1 Enhanced ErWCA |
|
5. Experimental Results and Discussion
5.1. Experimental Series 2: Engineering Problems
5.1.1. Design of Industrial Refrigeration System Problem
5.1.2. Design of Speed Reducer Problem
5.1.3. Design of Multi-Product Batch Plant Problem
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hashim, F.; Salem, N.; Seddik, A. Optic disc boundary detection from digital fundus images. J. Med. Imaging Health Inform. 2015, 5, 50–56. [Google Scholar] [CrossRef]
- Hashim, F.A.; Salem, N.M.; Seddik, A.F. Automatic segmentation of optic disc from color fundus images. Jokull J. 2013, 63, 142–153. [Google Scholar]
- Mostafa, R.; Ewees, A.; Ghoniem, R.; Abualigah, L.; Hashim, F. Boosting chameleon swarm algorithm with consumption AEO operator for global optimization and feature selection. Knowl.-Based Syst. 2022, 246, 108743. [Google Scholar]
- Mostafa, R.; El-Attar, N.; Sabbeh, S.; Vidyarthi, A.; Hashim, F. ST-AL: A hybridized search based metaheuristic computational algorithm towards optimization of high dimensional industrial datasets. Soft Comput. 2022, 1–29. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W.; Mirjalili, S. Henry gas solubility optimization: A novel physics-based algorithm. Future Gener. Comput. Syst. 2019, 101, 646–667. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Fathi, H.; AlSalman, H.; Gumaei, A.; Manhrawy, I.I.; Hussien, A.G.; El-Kafrawy, P. An Efficient Cancer Classification Model Using Microarray and High-Dimensional Data. Comput. Intell. Neurosci. 2021, 2021, 7231126. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt Jr, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Glover, F. Heuristics for integer programming using surrogate constraints. Decis. Sci. 1977, 8, 156–166. [Google Scholar] [CrossRef]
- Abualigah, L.M.; Sawaie, A.M.; Khader, A.T.; Rashaideh, H.; Al-Betar, M.A.; Shehab, M. β-hill climbing technique for the text document clustering. New Trends Inf. Technol. (NTIT) 2017, 60, 60–66. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Hussien, A.G. An enhanced opposition-based Salp Swarm Algorithm for global optimization and engineering problems. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 129–150. [Google Scholar] [CrossRef]
- Hussien, A.G.; Hassanien, A.E.; Houssein, E.H. Swarming behaviour of salps algorithm for predicting chemical compound activities. In Proceedings of the 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 5–7 December 2017; pp. 315–320. [Google Scholar]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Hussien, A.G.; Amin, M.; Abd El Aziz, M. A comprehensive review of moth-flame optimisation: Variants, hybrids, and applications. J. Exp. Theor. Artif. Intell. 2020, 32, 705–725. [Google Scholar] [CrossRef]
- Hussien, A.G.; Heidari, A.A.; Ye, X.; Liang, G.; Chen, H.; Pan, Z. Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method. Eng. Comput. 2022, 1–45. [Google Scholar] [CrossRef]
- Hussien, A.G.; Amin, M.; Wang, M.; Liang, G.; Alsanad, A.; Gumaei, A.; Chen, H. Crow search algorithm: Theory, recent advances, and applications. IEEE Access 2020, 8, 173548–173565. [Google Scholar] [CrossRef]
- Hashim, F.A.; Hussien, A.G. Snake Optimizer: A novel meta-heuristic optimization algorithm. Knowl.-Based Syst. 2022, 242, 108320. [Google Scholar] [CrossRef]
- Abualigah, L.; Elaziz, M.A.; Hussien, A.G.; Alsalibi, B.; Jalali, S.M.J.; Gandomi, A.H. Lightning search algorithm: A comprehensive survey. Appl. Intell. 2021, 51, 2353–2376. [Google Scholar] [CrossRef]
- Assiri, A.S.; Hussien, A.G.; Amin, M. Ant Lion Optimization: Variants, hybrids, and applications. IEEE Access 2020, 8, 77746–77764. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Mittal, N.; Hussien, A.G.; Sroubek, F. A feature level image fusion for Night-Vision context enhancement using Arithmetic optimization algorithm based image segmentation. Expert Syst. Appl. 2022, 209, 118272. [Google Scholar] [CrossRef]
- Wang, S.; Hussien, A.; Jia, H.; Abualigah, L.; Zheng, R. Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems. Mathematics 2022, 10, 1696. [Google Scholar] [CrossRef]
- Zheng, R.; Hussien, A.; Jia, H.; Abualigah, L.; Wang, S.; Wu, D. An Improved Wild Horse Optimizer for Solving Optimization Problems. Mathematics 2022, 10, 1311. [Google Scholar] [CrossRef]
- Mostafa, R.; Hussien, A.; Khan, M.; Kadry, S.; Hashim, F. Enhanced coot optimization algorithm for dimensionality reduction. In Proceedings of the 2022 Fifth International Conference of Women in Data Science at Prince Sultan University (WiDS PSU), Riyadh, Saudi Arabia, 28–29 March 2022; pp. 43–48. [Google Scholar]
- Yu, H.; Jia, H.; Zhou, J.; Hussien, A. Enhanced Aquila optimizer algorithm for global optimization and constrained engineering problems. Math. Biosci. Eng. 2022, 19, 14173–14211. [Google Scholar] [CrossRef]
- Hussien, A.G.; Amin, M. A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int. J. Mach. Learn. Cybern. 2022, 13, 309–336. [Google Scholar] [CrossRef]
- Hussien, A.G.; Abualigah, L.; Abu Zitar, R.; Hashim, F.; Amin, M.; Saber, A.; Almotairi, K.H.; Gandomi, A.H. Recent advances in harris hawks optimization: A comparative study and applications. Electronics 2022, 11, 1919. [Google Scholar] [CrossRef]
- Hussien, A.G.; Oliva, D.; Houssein, E.H.; Juan, A.A.; Yu, X. Binary whale optimization algorithm for dimensionality reduction. Mathematics 2020, 8, 1821. [Google Scholar] [CrossRef]
- Hussien, A.G.; Hassanien, A.E.; Houssein, E.H.; Amin, M.; Azar, A.T. New binary whale optimization algorithm for discrete optimization problems. Eng. Optim. 2020, 52, 945–959. [Google Scholar] [CrossRef]
- Oyelade, O.N.; Ezugwu, A.E.S.; Mohamed, T.I.; Abualigah, L. Ebola optimization search algorithm: A new nature-inspired metaheuristic optimization algorithm. IEEE Access 2022, 10, 16150–16177. [Google Scholar] [CrossRef]
- Agushaka, J.O.; Ezugwu, A.E.; Abualigah, L. Dwarf mongoose optimization algorithm. Comput. Methods Appl. Mech. Eng. 2022, 391, 114570. [Google Scholar] [CrossRef]
- Hussien, A.G.; Hassanien, A.E.; Houssein, E.H.; Bhattacharyya, S.; Amin, M. S-shaped binary whale optimization algorithm for feature selection. In Recent Trends in Signal and Image Processing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 79–87. [Google Scholar]
- Hussien, A.G.; Houssein, E.H.; Hassanien, A.E. A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. In Proceedings of the 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 5–7 December 2017; pp. 166–172. [Google Scholar]
- Abualigah, L.; Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Clust. Comput. 2021, 24, 205–223. [Google Scholar] [CrossRef]
- Qaddoura, R.; Aljarah, I.; Faris, H.; Almomani, I. A classification approach based on evolutionary clustering and its application for ransomware detection. In Evolutionary Data Clustering: Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 237–248. [Google Scholar]
- Abualigah, L.; Gandomi, A.H.; Elaziz, M.A.; Hussien, A.G.; Khasawneh, A.M.; Alshinwan, M.; Houssein, E.H. Nature-inspired optimization algorithms for text document clustering—A comprehensive analysis. Algorithms 2020, 13, 345. [Google Scholar] [CrossRef]
- Barshandeh, S.; Piri, F.; Sangani, S.R. HMPA: An innovative hybrid multi-population algorithm based on artificial ecosystem-based and Harris Hawks optimization algorithms for engineering problems. Eng. Comput. 2022, 38, 1581–1625. [Google Scholar] [CrossRef]
- Al-Qaness, M.A.; Ewees, A.A.; Fan, H.; Abd El Aziz, M. Optimization method for forecasting confirmed cases of COVID-19 in China. J. Clin. Med. 2020, 9, 674. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jin, Z.; Mirjalili, S. Generalized normal distribution optimization and its applications in parameter extraction of photovoltaic models. Energy Convers. Manag. 2020, 224, 113301. [Google Scholar] [CrossRef]
- Qaddoura, R.; Manaseer, W.A.; Abushariah, M.A.; Alshraideh, M.A. Dental radiography segmentation using expectation-maximization clustering and grasshopper optimizer. Multimed. Tools Appl. 2020, 79, 22027–22045. [Google Scholar] [CrossRef]
- Elsheikh, A.H.; Sharshir, S.W.; Abd Elaziz, M.; Kabeel, A.; Guilan, W.; Haiou, Z. Modeling of solar energy systems using artificial neural network: A comprehensive review. Sol. Energy 2019, 180, 622–639. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Agushaka, J.O.; Abualigah, L.; Mirjalili, S.; Gandomi, A.H. Prairie Dog Optimization Algorithm. Neural Comput. Appl. 2022, 34, 20017–20065. [Google Scholar] [CrossRef]
- Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [Google Scholar] [CrossRef]
- Sadollah, A.; Eskandar, H.; Bahreininejad, A.; Kim, J.H. Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl. Soft Comput. 2015, 30, 58–71. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Stanovov, V.; Akhmedova, S.; Semenkin, E. LSHADE algorithm with rank-based selective pressure strategy for solving CEC 2017 benchmark problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–8. [Google Scholar]
- Salgotra, R.; Singh, U.; Saha, S.; Gandomi, A.H. Improving cuckoo search: Incorporating changes for CEC 2017 and CEC 2020 benchmark problems. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–7. [Google Scholar]
- Anita; Yadav, A.; Kumar, N. Artificial electric field algorithm for engineering optimization problems. Expert Syst. Appl. 2020, 149, 113308. [Google Scholar]
- Trivedi, A.; Srinivasan, D. Empirical investigations into the composite differential evolution on cec 2017 constrained optimization problems. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 280–285. [Google Scholar]
- Chen, D.; Luo, Y.; Yuan, X. Refrigeration system synthesis based on de-redundant model by particle swarm optimization algorithm. Chin. J. Chem. Eng. 2022. [Google Scholar] [CrossRef]
- Ahmed, R.; Mahadzir, S.; Rozali, N.E.M.; Biswas, K.; Matovu, F.; Ahmed, K. Artificial intelligence techniques in refrigeration system modelling and optimization: A multi-disciplinary review. Sustain. Energy Technol. Assess. 2021, 47, 101488. [Google Scholar] [CrossRef]
- Marechal, F.; Kalitventzeff, B. A tool for optimal synthesis of industrial refrigeration systems. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2001; Volume 9, pp. 457–462. [Google Scholar]
- Zhang, J.; Qin, X.; Xie, C.; Chen, H.; Jin, L. Optimization design on dynamic load sharing performance for an in-wheel motor speed reducer based on genetic algorithm. Mech. Mach. Theory 2018, 122, 132–147. [Google Scholar] [CrossRef]
- Zaman, M.A.U. On the Reliability-Based Design Optimization (RBDO) of A Speed Reducer. Int. J. Eng. Innov. Res. 2019, 8, 14–22. [Google Scholar]
- Borisenko, A.; Gorlatch, S. Efficient GPU-parallelization of batch plants design using metaheuristics with parameter tuning. J. Parallel Distrib. Comput. 2021, 154, 74–81. [Google Scholar] [CrossRef]
- Han, Y.; Gu, X. Cooperative hybrid evolutionary algorithm for large scale multi-stage multi-product batch plants scheduling problem. Neurocomputing 2021, 419, 80–96. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Meng, X.B.; Gao, X.Z.; Lu, L.; Liu, Y.; Zhang, H. A new bio-inspired optimisation algorithm: Bird Swarm Algorithm. J. Exp. Theor. Artif. Intell. 2016, 28, 673–687. [Google Scholar] [CrossRef]
- Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Mirjalili, S.Z.; Mirjalili, S.; Saremi, S.; Faris, H.; Aljarah, I. Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 2018, 48, 805–820. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Eng. Appl. Artif. Intell. 2022, 114, 105075. [Google Scholar] [CrossRef]
- Azizi, M.; Talatahari, S.; Gandomi, A.H. Fire Hawk Optimizer: A novel metaheuristic algorithm. Artif. Intell. Rev. 2022, 1–77. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Karimi, I.; Lee, D.Y. Multiproduct batch plant scheduling. In Vol. 6: Chemical Engineering Optimization Models with GAMS; CACHE: Notre Dame, IN, USA, 1991. [Google Scholar]
- Wang, Z.; Jia, X.P.; Shi, L. Optimization of multi-product batch plant design under uncertainty with environmental considerations. Clean Technol. Environ. Policy 2010, 12, 273–282. [Google Scholar] [CrossRef]
No. | Parameter Name | Value |
---|---|---|
1 | Population Size | 30 |
2 | Dim | 30 |
3 | Max number of iteration | 500 |
Alg. | Parameter | Value |
---|---|---|
ErWCA | ||
4 | ||
WCA | ||
4 | ||
BOA | c | 0.01 |
a | [0.1, 0.3] | |
p | 0.8 | |
BSA | mix-rate | 1.0 |
F | ||
CSA | 0.1 | |
0.2 | ||
GOA | 1 | |
0.00004 | ||
HHO | ||
WOA | a | |
[−1, −2] | ||
DO | ||
k | [0, 1] |
Fun | EErWCA | ErWCA | WCA | BOA | BSA | CSA | GOA | HHO | WOA | DO | FHO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 4 | 1 | 2 | 9 | 10 | 5 | 11 | 6 | 7 | 3 | 8 | |
F3 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 7 | 2 | 3 | 8 | 9 | 4 | 11 | 5 | 10 | 1 | 6 | |
F4 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 3 | 1 | 2 | 11 | 9 | 6 | 10 | 5 | 7 | 4 | 8 | |
F5 | min | 666.12 | ||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 4 | 7 | 10 | 9 | 2 | 11 | 6 | 8 | 3 | 5 | |
F6 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 4 | 6 | 8 | 10 | 5 | 11 | 7 | 9 | 3 | 2 | |
F7 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 4 | 5 | 9 | 10 | 2 | 11 | 8 | 7 | 3 | 6 | |
F8 | min | 1139.73 | ||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 5 | 6 | 9 | 1 | 2 | 1 | 4 | 8 | 3 | 7 | |
F9 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 5 | 6 | 9 | 8 | 2 | 11 | 7 | 10 | 4 | 3 | |
F10 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 4 | 6 | 11 | 8 | 2 | 10 | 5 | 7 | 3 | 9 | |
F11 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 5 | 6 | 8 | 10 | 4 | 11 | 3 | 9 | 2 | 7 | |
F12 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 3 | 1 | 2 | 10 | 9 | 6 | 11 | 5 | 7 | 4 | 8 | |
F13 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 3 | 2 | 10 | 9 | 4 | 11 | 6 | 7 | 5 | 8 | |
F14 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 4 | 3 | 2 | 8 | 9 | 1 | 11 | 6 | 10 | 5 | 7 | |
F15 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 2 | 3 | 9 | 10 | 4 | 11 | 6 | 7 | 5 | 8 | |
F16 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 4 | 3 | 11 | 10 | 5 | 9 | 6 | 8 | 2 | 7 | |
F17 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 4 | 6 | 11 | 9 | 3 | 10 | 7 | 8 | 2 | 5 | |
F18 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 4 | 2 | 3 | 8 | 10 | 1 | 11 | 6 | 9 | 5 | 7 | |
F19 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 2 | 3 | 9 | 10 | 5 | 11 | 6 | 7 | 4 | 8 | |
F20 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 6 | 5 | 9 | 10 | 2 | 11 | 4 | 8 | 3 | 7 | |
F21 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 4 | 6 | 5 | 10 | 3 | 11 | 8 | 9 | 2 | 7 | |
F22 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 5 | 7 | 3 | 10 | 2 | 11 | 8 | 9 | 6 | 4 | |
F23 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 2 | 5 | 8 | 11 | 6 | 10 | 9 | 7 | 3 | 4 | |
F24 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 3 | 5 | 11 | 10 | 7 | 8 | 9 | 6 | 4 | 2 | |
F25 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 2 | 1 | 5 | 11 | 10 | 7 | 8 | 9 | 6 | 4 | 3 | |
F26 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 10 | 11 | 3 | 9 | 8 | 5 | 6 | 7 | 4 | 2 | 1 | |
F27 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 2 | 4 | 10 | 11 | 9 | 8 | 5 | 6 | 3 | 7 | |
F28 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 4 | 2 | 1 | 10 | 9 | 6 | 11 | 5 | 7 | 3 | 8 | |
F29 | min | 5328.56 | ||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 3 | 4 | 11 | 10 | 5 | 9 | 7 | 8 | 2 | 6 | |
F30 | min | |||||||||||
max | ||||||||||||
mean | ||||||||||||
std | ||||||||||||
rank | 1 | 2 | 3 | 10 | 9 | 5 | 11 | 6 | 7 | 4 | 8 |
Function | Measures | EErWCA vs. ErWCA | EErWCA vs. WCA | EErWCA vs. BOA | EErWCA vs. BSA | EErWCA vs. CSA | EErWCA vs. GOA | EErWCA vs. HHO | EErWCA vs. WOA | EErWCA vs. DO | EErWCA vs. FHO |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | AVG | ||||||||||
F3 | AVG | ||||||||||
F4 | AVG | ||||||||||
F5 | AVG | ||||||||||
F6 | AVG | ||||||||||
F7 | AVG | ||||||||||
F8 | AVG | ||||||||||
F9 | AVG | ||||||||||
F10 | AVG | ||||||||||
F11 | AVG | ||||||||||
F12 | AVG | ||||||||||
F13 | AVG | ||||||||||
F14 | AVG | ||||||||||
F15 | AVG | ||||||||||
F16 | AVG | ||||||||||
F17 | AVG | ||||||||||
F18 | AVG | ||||||||||
F19 | AVG | ||||||||||
F20 | AVG | ||||||||||
F21 | AVG | ||||||||||
F22 | AVG | ||||||||||
F23 | AVG | ||||||||||
F24 | AVG | ||||||||||
F25 | AVG | ||||||||||
F26 | AVG | ||||||||||
F27 | AVG | ||||||||||
F28 | AVG | ||||||||||
F29 | AVG | ||||||||||
F30 | AVG |
Mea. | EErWCA | ErWCA | WCA | BOA | BSA | COA | CSA | GOA | HHO | WOA |
---|---|---|---|---|---|---|---|---|---|---|
min | 0.046781 | 0.032213 | 0.032213 | 24.34002 | 16.64046 | 3654.843 | 0.202915 | 8716.021 | 0.364219 | 0.405337 |
max | 1,881,267 | 936,195.3 | 936,195.3 | 1.09 × 108 | 1.11 × 108 | 62,206,678 | 1,636,799 | 65,297,497 | 984,165.9 | 1.46 × 108 |
mean | 108,038.4 | 124,825.7 | 343,270.8 | 15,693,452 | 18,784,693 | 9,378,549 | 649,780.4 | 9,506,237 | 349,833.5 | 5,008,193 |
STD | 377,490.9 | 323,684.1 | 458,857.1 | 23,600,650 | 26,950,500 | 14,020,748 | 484,065.8 | 14,314,970 | 466,964.4 | 26,683,805 |
rank | 1 | 2 | 3 | 9 | 10 | 7 | 5 | 8 | 4 | 6 |
Best | ×1 | ×2 | ×3 | ×4 | ×5 | ×6 | ×7 | ×8 | ×9 | ×10 | ×11 | ×12 | ×13 | ×14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EErWCA | 0.046781 | 0.001 | 0.001 | 0.001 | 0.001001 | 0.00773 | 0.001 | 1.52404 | 1.523999 | 4.99997 | 2.087664 | 0.007892 | 0.00789 | 0.01958 | 0.235028 |
ErWCA | 0.032213 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 1.524 | 1.524 | 5 | 2 | 0.001 | 0.001 | 0.007293 | 0.087556 |
WCA | 0.032213 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 1.524 | 1.524 | 5 | 2 | 0.001 | 0.001 | 0.007293 | 0.087556 |
BOA | 24.34002 | 0.001 | 0.014124 | 0.008668 | 0.001 | 0.006265 | 0.001 | 2.424603 | 2.785133 | 2.520375 | 2.638812 | 0.13586 | 0.001 | 0.001 | 0.001 |
BSA | 16.64046 | 0.001 | 0.008118 | 0.007184 | 1.975456 | 2.722751 | 0.001 | 2.695728 | 2.75106 | 1.999971 | 2.484036 | 1.971782 | 0.001 | 0.001 | 0.004513 |
COA | 3654.843 | 0.001 | 0.002534 | 3.531012 | 5 | 2.47318 | 3.041167 | 4.596045 | 5 | 5 | 4.845687 | 0.001 | 0.001 | 0.001 | 0.001 |
CSA | 0.202915 | 0.001 | 0.00107 | 0.001136 | 0.001156 | 0.001092 | 0.001 | 3.70834 | 1.526876 | 4.999623 | 5 | 0.001 | 0.001 | 0.009608 | 0.115344 |
GOA | 8716.021 | 0.001 | 0.116401 | 3.365744 | 0.01427 | 2.575789 | 1.660094 | 2.992306 | 3.971143 | 4.629864 | 4.642211 | 0.001 | 0.001 | 0.001 | 0.001 |
HHO | 0.364219 | 0.001 | 0.001 | 0.005309 | 0.242903 | 0.010031 | 0.004435 | 2.86165 | 2.513477 | 2.024121 | 2.000021 | 0.001 | 0.001 | 0.006787 | 0.079804 |
WOA | 0.405337 | 0.001 | 0.001 | 0.001 | 0.582783 | 0.001 | 0.001 | 1.667485 | 2.171946 | 4.99986 | 1.999999 | 0.001 | 0.001 | 0.001 | 0.010963 |
Measures | EErWCA | ErWCA | WCA | BOA | BSA | COA | CSA | GOA | HHO | WOA |
---|---|---|---|---|---|---|---|---|---|---|
min | 2993.634 | 2993.634 | 2993.634 | 3096.64 | 2993.7 | 3008.4 | 2993.634 | 3034.447 | 2994.197 | 2993.701 |
max | 2994.306 | 3002.967 | 3006.627 | 12,808.17 | 3536.411 | 3147.676 | 3000.09 | 8843.277 | 4307.676 | 5905.984 |
mean | 2993.657 | 2994.568 | 2994.5 | 4605.827 | 3025.235 | 3056.898 | 2993.947 | 4425.907 | 3146.587 | 3487.556 |
STD | 0.122528 | 2.847755 | 3.296278 | 1934.142 | 99.6893 | 33.93009 | 1.224181 | 1503.485 | 259.7566 | 687.8122 |
rank | 1 | 4 | 3 | 10 | 5 | 6 | 2 | 9 | 7 | 8 |
Best | ×1 | ×2 | ×3 | ×4 | ×5 | ×6 | ×7 | |
---|---|---|---|---|---|---|---|---|
EErWCA | 2993.634 | 3.497599 | 0.7 | 17 | 7.3 | 7.713535 | 3.350056 | 5.285631 |
ErWCA | 2993.634 | 3.497599 | 0.7 | 17 | 7.3 | 7.713535 | 3.350056 | 5.285631 |
WCA | 2993.634 | 3.497599 | 0.7 | 17 | 7.3 | 7.713535 | 3.350056 | 5.285631 |
BOA | 3096.64 | 3.543767 | 0.7 | 17.10648 | 7.3 | 7.964609 | 3.571151 | 5.287996 |
BSA | 2993.7 | 3.497654 | 0.7 | 17 | 7.3 | 7.716848 | 3.350044 | 5.285662 |
COA | 3008.4 | 3.490789 | 0.7 | 17 | 8.280791 | 7.722827 | 3.35311 | 5.288259 |
CSA | 2993.634 | 3.497599 | 0.7 | 17 | 7.3 | 7.713535 | 3.350056 | 5.285631 |
GOA | 3034.447 | 3.571421 | 0.701486 | 17 | 7.649347 | 7.714521 | 3.353149 | 5.288426 |
HHO | 2994.197 | 3.49797 | 0.7 | 17 | 7.3 | 7.732423 | 3.350521 | 5.285312 |
WOA | 2993.701 | 3.49765 | 0.7 | 17 | 7.3 | 7.712778 | 3.350306 | 5.28539 |
Measures | EErWCA | ErWCA | WCA | BOA | BSA | COA | CSA | GOA | HHO | WOA |
---|---|---|---|---|---|---|---|---|---|---|
min | 53,730.23 | 53,742.04 | 53,655.26 | 85,428.4 | 65,476.74 | 71,645.61 | 53,639.63 | 125,170.2 | 64,778.06 | 76,198.96 |
max | 69,515.04 | 87,986.7 | 74,078.6 | 3.48 × 108 | 366,060.1 | 152,015.5 | 90,826.57 | 4.71 × 1010 | 90,866.09 | 165,947.4 |
mean | 59,552.25 | 63,954.91 | 61,881.41 | 15,523,439 | 106,832.5 | 101,835.2 | 60,671.93 | 3.39 × 109 | 74,008.67 | 112,619.2 |
STD | 3435.181 | 7243.705 | 5361.169 | 63,161,457 | 52,821.84 | 19,813.64 | 7773.95 | 1.03 × 1010 | 6004.125 | 25,070.13 |
rank | 1 | 4 | 3 | 9 | 7 | 6 | 2 | 10 | 5 | 8 |
Best | ×1 | ×2 | ×3 | ×4 | ×5 | ×6 | ×7 | ×8 | ×9 | ×10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
EErWCA | 53,730.23 | 1.4738 | 0.902599 | 1.057608 | 973.952 | 1460.816 | 1292.906 | 19.9999 | 15.9999 | 224.9307 | 131.0022 |
ErWCA | 53,742.04 | 0.879451 | 0.537306 | 0.970167 | 957.5071 | 1436.261 | 1336.526 | 20 | 15.99997 | 247.3582 | 115.6977 |
WCA | 53,655.26 | 0.51 | 0.51 | 0.51 | 967.1175 | 1450.676 | 1301.476 | 20 | 16 | 230.4552 | 126.5518 |
BOA | 85,428.4 | 1.518289 | 1.633461 | 1.291396 | 1149.43 | 1196.297 | 1024.16 | 13.10134 | 9.576884 | 161.7096 | 100.4147 |
BSA | 65,476.74 | 0.70488 | 1.551702 | 0.847311 | 1012.547 | 1160.721 | 928.2855 | 10.54547 | 15.99954 | 161.102 | 94.62521 |
COA | 71,645.61 | 0.51 | 0.51 | 0.51 | 1300.827 | 2500 | 2276.628 | 20 | 16 | 485.6925 | 78.80057 |
CSA | 53,639.63 | 0.510173 | 0.510954 | 0.510004 | 964.0163 | 1446.027 | 1307.54 | 19.99954 | 15.99949 | 233.8113 | 124.0984 |
GOA | 125,170.2 | 1.638572 | 3.111043 | 2.266871 | 1145.717 | 1248.944 | 1296.439 | 7.316115 | 15.46341 | 140.0631 | 125.618 |
HHO | 64,778.06 | 1.713052 | 1.587087 | 1.188423 | 524.3093 | 743.4804 | 1127.821 | 9.999611 | 8.001561 | 150.0532 | 48.29276 |
WOA | 76,198.96 | 1.576433 | 1.501728 | 1.39028 | 746.8241 | 1203.952 | 864.5001 | 9.999428 | 8.189601 | 131.1378 | 55.74986 |
EErWCA vs. | ErWCA | WCA | BOA | BSA | COA | CSA | GOA | HHO | WOA |
---|---|---|---|---|---|---|---|---|---|
Industrial refrigeration system | 0.347800991 | 0.000729511 | 0.01563812 | 0.01031467 | |||||
Speed reducer | |||||||||
Multi-product batch plant | 0.093340797 | 0.652043622 | 0.673495053 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussien, A.G.; Hashim, F.A.; Qaddoura, R.; Abualigah, L.; Pop, A. An Enhanced Evaporation Rate Water-Cycle Algorithm for Global Optimization. Processes 2022, 10, 2254. https://doi.org/10.3390/pr10112254
Hussien AG, Hashim FA, Qaddoura R, Abualigah L, Pop A. An Enhanced Evaporation Rate Water-Cycle Algorithm for Global Optimization. Processes. 2022; 10(11):2254. https://doi.org/10.3390/pr10112254
Chicago/Turabian StyleHussien, Abdelazim G., Fatma A. Hashim, Raneem Qaddoura, Laith Abualigah, and Adrian Pop. 2022. "An Enhanced Evaporation Rate Water-Cycle Algorithm for Global Optimization" Processes 10, no. 11: 2254. https://doi.org/10.3390/pr10112254
APA StyleHussien, A. G., Hashim, F. A., Qaddoura, R., Abualigah, L., & Pop, A. (2022). An Enhanced Evaporation Rate Water-Cycle Algorithm for Global Optimization. Processes, 10(11), 2254. https://doi.org/10.3390/pr10112254