Enhancing Barite Carbothermal Reduction with Brown Coal by Compaction of the Charge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Carbothermal Reduction
2.3.1. Compacted Barite Sample
2.3.2. Powder Barite Sample
2.4. Characterization
2.5. Barium Sulfide Percentage Measuring
3. Results and Discussion
3.1. Compacted Sample
3.2. Powder Sample
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ripin, A.; Mohamed, F.; Choo, T.F.; Yusof, M.R.; Hashim, S.; Ghoshal, D.S. X-ray shielding behaviour of kaolin derived mullite-barites ceramic. Radiat. Phys. Chem. 2018, 144, 63–68. [Google Scholar] [CrossRef]
- Da Silva, M.J.; Bartolome, J.F.; Antonio, H.; Mello-Castanho, S. Glass ceramic sealants belonging to BAS (BaO–Al2O3–SiO2) ternary system modified with B2O3 addition: A different approach to access the SOFC seal issue. J. Eur. Ceram. Soc. 2016, 36, 631–644. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, F.; Ma, L.; Yang, J.; Yang, J.; Xiang, H. Reaction mechanism study of new scheme using elemental sulfur for conversion of barite to barium sulfide. Powder Technol. 2020, 360, 1348–1354. [Google Scholar] [CrossRef]
- Diós, P.; Szigeti, K.; Budán, F.; Pócsik, M.; Veres, D.S.; Máthé, D.; Nagy, S. Influence of barium sulfate X-ray imaging contrast material on properties of floating drug delivery tablets. Eur. J. Pharm. Sci. 2016, 95, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, D.; Fernández, J.; Ordoñez, S.; Aguilar, C.; Rojas, P.A.; Serafini, D. Effect of mechanical activation on the barite carbothermic reduction. Int. J. Miner. Process. 2012, 102, 124–129. [Google Scholar] [CrossRef]
- Vakilpour, S.; Ghaderi Hamidi, A. Effects of Temperature and Particle Size Distribution on Barite Reduction by Carbon monoxide Gas. J. Part. Sci. Technol. 2016, 2, 79–85. [Google Scholar]
- Mulopo, J.; Motaung, S. Carbothermal reduction of barium sulfate-rich sludge from acid mine drainage treatment. Mine Water Environ. 2014, 33, 48–53. [Google Scholar] [CrossRef]
- Ravdel, A.; Novikova, N. Reduction of barite with carbon. J. Appl. Chem. 1963, 36, 1384–1392. [Google Scholar]
- Pelovski, Y.; Gruchavov, I.; Dombalov, I. Barium sulfate reduction by carbon in presence of additives. J. Therm. Anal. 1987, 32, 1743–1745. [Google Scholar] [CrossRef]
- McKee, D.W. Mechanisms of the alkali metal catalysed gasification of carbon. Fuel 1983, 62, 170–175. [Google Scholar] [CrossRef]
- Lozhkin, A.F.; Pashcenko, V.N.; Povar, F.V. Kinetics of Reduction of Barite by Roasting with Carbon. J. Appl. Chem. 1974, 47, 1031–1034. [Google Scholar]
- Jagtap, S.B.; Pande, A.R.; Gokarn, A.N. Effect of catalysts on the kinetics of reduction of barite by carbon. Ind. Eng. Chem. Res. 1990, 29, 795–799. [Google Scholar] [CrossRef]
- McKee, D.W.; Chatterji, D. The catalytic behavior of alkali metal carbonates and oxides in graphite oxidation reactions. Carbon 1975, 13, 381–390. [Google Scholar] [CrossRef]
- Kumar, J. Effect of Sodium Compounds on Reduction of Barite at High Temperature: A Comparative Study. Mater. Today Proc. 2019, 16, 870–874. [Google Scholar] [CrossRef]
- Salem, A.; Tavakoli, O.Y.; Jamshidi, S. Kinetic study of barite carbothermic reduction in presence of sodium carbonate as catalyst. Iran. J. Chem. Eng. 2010, 7, 58–67. [Google Scholar]
- Gokarn, A.N.; Pradhan, S.D.; Pathak, G.; Kulkarni, S.S. Vanadium-catalysed gasification of carbon and its application in the carbothermic reduction of barite. Fuel 2000, 79, 821–827. [Google Scholar] [CrossRef]
- Agrawal, R.K. The compensation effect: A fact or a fiction. J. Therm. Anal. 1989, 35, 909–917. [Google Scholar] [CrossRef]
- Jamshidi, S.; Salem, A. Role of extrusion process on kinetic of carbothermal reduction of barite. Thermochim. Acta 2010, 503, 108–114. [Google Scholar] [CrossRef]
- Xiong, N.; Tian, Y.; Yang, B.; Xu, B.Q.; Dai, T.; Dai, Y.N. Results of recent investigations of magnesia carbothermal reduction in vacuum. Vacuum 2019, 160, 213–225. [Google Scholar] [CrossRef]
- Li, K.; Chen, J.; Peng, J.; Ruan, R.; Srinivasakannan, C.; Chen, G. Pilot-scale study on enhanced carbothermal reduction of low-grade pyrolusite using microwave heating. Powder Technol. 2020, 360, 846–854. [Google Scholar] [CrossRef]
- Zhang, H.; Ruan, Y.; Liang, A.; Shih, K.; Diao, Z.; Su, M.; Hou, L.; Chen, D.; Lu, H.; Kong, L. Carbothermal reduction for preparing nZVI/BC to extract uranium: Insight into the iron species dependent uranium adsorption behavior. J. Clean. Prod. 2019, 239, 117873. [Google Scholar] [CrossRef]
- Agrawal, S.; Rayapudi, V.; Dhawan, N. Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values. Miner. Eng. 2019, 132, 202–210. [Google Scholar] [CrossRef]
- Yang, S.; Ma, W.; Wei, K.; Xie, K.; Wang, Z. Thermodynamic analysis and experimental verification for silicon recovery from the diamond wire saw silicon powder by vacuum carbothermal reduction. Sep. Purif. Technol. 2019, 228, 115754. [Google Scholar] [CrossRef]
- Yeşiltepe, S.; Buğdaycı, M.; Yücel, O.; Şeşen, M.K. Recycling of alkaline batteries via a carbothermal reduction process. Batteries 2019, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Snell, F.D.; Hilton, L. Encyclopedia of Industrial Chemical Analysis; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Kasaoka, S.; Sakata, Y.; Kayano, S.; Masuoka, Y. The Development of Rate Expressions and the Evaluation of Reactivity for Gasification of Various Coal Chars with Steam and Oxygen. Int. Chem. Eng. 1983, 23, 477–485. [Google Scholar]
- Kasaoka, S.; Sakata, Y.; Tong, C. Kinetic Evaluation of the Reactivity of Various Coals Chars for Gasification with Carbon Dioxide in Comparison with Steam. Int. Chem. Eng. 1985, 25, 161–175. [Google Scholar] [CrossRef]
- Levenspiel, O. Chemical Reaction Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1999; p. 684. [Google Scholar]
Temperature, °C | 900 | 950 | 1050 | 1150 |
---|---|---|---|---|
Rate constant, ×105 s−1 | 2.03 | 2.59 | 4.20 | 5.82 |
Temperature, °C | 900 | 950 | 1050 | 1150 |
---|---|---|---|---|
Rate constant, ×105 s−1 | 0.48 | 1.24 | 2.56 | 4.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ketegenov, T.; Kamunur, K.; Batkal, A.; Nadirov, R. Enhancing Barite Carbothermal Reduction with Brown Coal by Compaction of the Charge. Processes 2022, 10, 2323. https://doi.org/10.3390/pr10112323
Ketegenov T, Kamunur K, Batkal A, Nadirov R. Enhancing Barite Carbothermal Reduction with Brown Coal by Compaction of the Charge. Processes. 2022; 10(11):2323. https://doi.org/10.3390/pr10112323
Chicago/Turabian StyleKetegenov, Tlek, Kaster Kamunur, Aisulu Batkal, and Rashid Nadirov. 2022. "Enhancing Barite Carbothermal Reduction with Brown Coal by Compaction of the Charge" Processes 10, no. 11: 2323. https://doi.org/10.3390/pr10112323
APA StyleKetegenov, T., Kamunur, K., Batkal, A., & Nadirov, R. (2022). Enhancing Barite Carbothermal Reduction with Brown Coal by Compaction of the Charge. Processes, 10(11), 2323. https://doi.org/10.3390/pr10112323