A Study of Performance Evaluation for Textile and Garment Enterprises
Abstract
:1. Introduction
2. Literature Review
2.1. Data Envelopment Analysis (DEA) Model
2.2. Malmquist Productivity Index (MPI)
2.3. Epsilon-Based Measure (EBM)
2.4. Textile and Garment Industry Related Research
3. Materials and Methods
3.1. Research Framework
3.2. DMU Selection
3.3. Input and Output Selection
- (I1)
- Total assets are all of the resources that a company owns and manages, including both current and long-term assets.
- (I2)
- Cost of goods sold is the inventory value of goods sold for a specific period of time.
- (I3)
- Liabilities are the enterprise’s liabilities stemming from previous events and transactions, which the company has to pay with its resources.
- (O1)
- Total revenue is the total amount money earned by a corporation through the sale of its goods or services over time (a day, a week, a month, or a year).
- (O2)
- Gross profit is the portion of profit a company earns after deducting the costs involved in making and selling the product or the costs involved in providing the company’s services.
3.4. Data Envelopment Analysis (DEA)
3.4.1. Pearson Correlation
3.4.2. DEA–Malmquist Model
- (1)
- MPI > 1: productivity improvement.
- (2)
- MPI = 1: constant productivity.
- (3)
- MPI < 1: decrease in productivity.
3.4.3. Epsilon-Based Measure Efficiency
Diversity Index and Affinity Index
4. Results Analysis
4.1. Data Analysis
4.2. Pearson Correlation Check
4.3. Results of Malmquist Model
4.3.1. Technical Efficiency Change (Catch-Up Index—CA)
4.3.2. Technological Change (Frontier-Shift Index—FR)
4.3.3. Malmquist Productivity Index (MPI)—Total Productivity Change
4.4. Results of Epsilon-Based Measure Efficiency
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hugo, G. International labour migration and migration policies in Southeast Asia. Asian J. Soc. Sci. 2012, 40, 392–418. [Google Scholar] [CrossRef]
- Nhung, T.T.B.; Thuy, T.T.P. Vietnam’s textile and garment industry: An overview. Bus. IT 2018, 8, 45–53. [Google Scholar] [CrossRef]
- Le, Q.A.; Tran, V.A.; Duc, B.L.N. The Belt and Road Initiative and its perceived impacts on the textile and garment industry of Vietnam. J. Open Innov. Technol. Mark. Complex. 2019, 5, 59. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-N.; Viet, V.T.H.; Ho, T.P.; Nguyen, V.T.; Nguyen, V.T. Multi-criteria decision model for the selection of suppliers in the textile industry. Symmetry 2020, 12, 979. [Google Scholar] [CrossRef]
- LeBlanc, M.; Tibshirani, R.J. Adaptive principal surfaces. J. Am. Stat. Assoc. 1994, 89, 53–64. [Google Scholar] [CrossRef]
- Sekulic, S.; Kowalski, B.R. MARS: A tutorial. J. Chemom. 1992, 6, 199–216. [Google Scholar] [CrossRef]
- Steinberg, D. An alternative to neural nets: Multivariate adaptive regression splines (MARS). PC AI 2001, 15, 38–41. [Google Scholar]
- Wang, C.-N.; Nguyen, H.-K.; Liao, R.-Y. Partner selection in supply chain of vietnam’s textile and apparel industry: The application of a hybrid DEA and GM (1, 1) approach. Math. Probl. Eng. 2017, 2017, 7826840. [Google Scholar] [CrossRef] [Green Version]
- Tuan, T.M. Labor export management in some countries and practice in Vietnam. J. Econ. Dev. 2019, 52–60. [Google Scholar]
- Nguyen, T. Vietnam and Its Diaspora: An Evolving Relationship. In Emigration and Diaspora Policies in the Age of Mobility; Springer: Berlin/Heidelberg, Germany, 2017; pp. 239–255. [Google Scholar]
- Tone, K.; Tsutsui, M.J.E. An epsilon-based measure of efficiency in DEA–A third pole of technical efficiency. Eur. J. Oper. Res. 2010, 207, 1554–1563. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.J. Malmquist productivity indexes and Fisher ideal indexes. Econ. J. 1992, 102, 158–160. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Tone, K.J. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Drake, L.; Hall, M.J. Finance, Efficiency in Japanese banking: An empirical analysis. J. Bank. Financ. 2003, 27, 891–917. [Google Scholar] [CrossRef]
- Gómez-Gallego, J.C.; Gómez-Gallego, M.; García-García, J.F.; Faura-Martinez, U. Evaluation of the efficiency of European health systems using fuzzy data envelopment analysis. Healthcare 2021, 9, 1270. [Google Scholar] [CrossRef]
- Ratner, S.; Lychev, A.; Rozhnov, A.; Lobanov, I. Efficiency evaluation of regional environmental management systems in russia using data envelopment analysis. Mathematics 2021, 9, 2210. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Lei, L.; Qiu, S. Evaluation on the Efficiency of LED Energy Enterprises in China by Employing the DEA Model. Mathematics 2021, 9, 2356. [Google Scholar] [CrossRef]
- Halkos, G.E.; Tzeremes, N.G. Analyzing the Greek renewable energy sector: A Data Envelopment Analysis approach. Renew. Sustain. Energy Rev. 2012, 16, 2884–2893. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Lindgren, B.; Roos, P. Productivity changes in Swedish pharamacies 1980–1989: A non-parametric Malmquist approach. J. Product. Anal. 1992, 3, 85–101. [Google Scholar] [CrossRef]
- Xue, W.; Li, H.; Ali, R.; ur Rehman, R.; Fernández-Sánchez, G. Assessing the static and dynamic efficiency of scientific research of HEIs China: Three stage dea–malmquist index approach. Sustainability 2021, 13, 8207. [Google Scholar] [CrossRef]
- Azad, M.; Kalam, A.; Munisamy, S.; Masum, A.K.M.; Saona, P.; Wanke, P. Bank efficiency in Malaysia: A use of malmquist meta-frontier analysis. Eurasian Bus. Rev. 2017, 7, 287–311. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, T.-L.; Dang, T.-T. Analyzing operational efficiency in real estate companies: An application of GM (1, 1) and dea malmquist model. Mathematics 2021, 9, 202. [Google Scholar] [CrossRef]
- Wang, D.; Li, T. Carbon emission performance of independent oil and natural gas producers in the United States. Sustainability 2018, 10, 110. [Google Scholar] [CrossRef] [Green Version]
- Mariano, J.R.L.; Liao, M.; Ay, H. Performance Evaluation of Solar PV Power Plants in Taiwan Using Data Envelopment Analysis. Energies 2021, 14, 4498. [Google Scholar] [CrossRef]
- Wang, C.-N.; Day, J.-D.; Nguyen, T.-K.-L. Applying EBM model and grey forecasting to assess efficiency of third-party logistics providers. J. Adv. Transp. 2018, 2018, 1212873. [Google Scholar] [CrossRef]
- Wang, C.-N.; Hoang, Q.-N.; Nguyen, T.-K.-L. Integrating the EBM Model and LTS (A, A, A) Model to Evaluate the Efficiency in the Supply Chain of Packaging Industry in Vietnam. Axioms 2021, 10, 33. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, N.-A.-T.; Fu, H.-P.; Hsu, H.-P.; Dang, T.-T. Efficiency assessment of seaport terminal operators using DEA Malmquist and epsilon-based measure models. Axioms 2021, 10, 48. [Google Scholar] [CrossRef]
- Chandra, P.; Cooper, W.W.; Li, S.; Rahman, A. Using DEA to evaluate 29 Canadian textile companies—Considering returns to scale. Int. J. Prod. Econ. 1998, 54, 129–141. [Google Scholar] [CrossRef]
- Jahanshahloo, G.R.; Khodabakhshi, M. Suitable combination of inputs for improving outputs in DEA with determining input congestion: Considering textile industry of China. Appl. Math. Comput. 2004, 151, 263–273. [Google Scholar]
- Le, T.N.; Huang, Y.F.; Wang, C.N. The selection of strategic alliance partner in Vietnam garment industry using Grey theory and DEA. In Proceedings of the 2014 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, 10–12 June 2014; pp. 673–676. [Google Scholar]
- Van Trang, T.; Do, Q.H.; Luong, M.H. Economics, Performance Evaluation of Vietnamese Apparel Enterprises: An Application of DEA Approach. WSEAS Trans. Bus. Econ. 2021, 18, 1–9. [Google Scholar] [CrossRef]
- Nguyen, H.-K.; Vu, M.-N. Assess the impact of the COVID-19 pandemic and propose solutions for sustainable development for textile enterprises: An integrated data envelopment analysis-binary logistic model approach. J. Risk Financ. Manag. 2021, 14, 465. [Google Scholar] [CrossRef]
- Le, T.-N.; Wang, C.-N. The integrated approach for sustainable performance evaluation in value chain of Vietnam textile and apparel industry. Sustainability 2017, 9, 477. [Google Scholar] [CrossRef]
- Mehmet, A.; İhsan, A.; Öztel, A. Determination of the Efficiencies of Textile Firms Listed in Borsa İstanbul by Using DEA-Window Analysis. Sosyoekonomi 2019, 27, 107–128. [Google Scholar]
- Joshi, R.N.; Singh, S.P. Estimation of total factor productivity in the Indian garment industry. J. Fash. Mark. Manag. Int. J. 2010, 14, 145–160. [Google Scholar] [CrossRef]
- Zhang, J.; Yao, M. Total Factor Productivity, Technical Efficiency and Technical Progress of China’s Textile and Garment Industry Change. J. Wuhan Text. Univ. 2014, 4, 8–11. [Google Scholar]
- Zhao, J.; Li, J.; Li, L. An Analysis on the Target Market of China’s Textile and Garment Export Trade. Procedia Eng. 2011, 15, 4718–4722. [Google Scholar] [CrossRef] [Green Version]
- Jakhar, S.K. Performance evaluation and a flow allocation decision model for a sustainable supply chain of an apparel industry. J. Clean. Prod. 2015, 87, 391–413. [Google Scholar] [CrossRef]
- Guarnieri, P.; Trojan, F. Conservation; Recycling, Decision making on supplier selection based on social, ethical, and environmental criteria: A study in the textile industry. Resour. Conserv. Recycl. 2019, 141, 347–361. [Google Scholar] [CrossRef]
- Zarbini-Sydani, A.; Karbasi, A.; Atef-Yekta, E. Technology, Evaluating and selecting supplier in textile industry using hierarchical fuzzy TOPSIS. Indian J. Sci. Technol. 2011, 4, 1322–1334. [Google Scholar] [CrossRef]
- Yayla, A.; Yıldız, A.; Özbek, A. Fuzzy TOPSIS method in supplier selection and application in the garment industry. Fibres Text. East. Eur. 2012, 93, 20–23. [Google Scholar]
- Dyar, M.D.; Carmosino, M.L.; Breves, E.A.; Ozanne, M.V.; Clegg, S.M.; Wiens, R.C. Comparison of partial least squares and lasso regression techniques as applied to laser-induced breakdown spectroscopy of geological samples. Spectrochim. Acta Part B At. Spectrosc. 2012, 70, 51–67. [Google Scholar] [CrossRef]
- Yilmaz, B.; Aras, E.; Nacar, S.; Kankal, M. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models. Sci. Total Environ. 2018, 639, 826–840. [Google Scholar] [CrossRef] [PubMed]
- Bui, D.T.; Hoang, N.-D.; Samui, P. Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam). J. Environ. Manag. 2019, 237, 476–487. [Google Scholar]
- Nguyen, H.T.T.; Doan, T.M.; Radeloff, V. Applying random forest classification to map land use/land cover using Landsat 8 OLI. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, W4. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-N.; Nguyen, T.-L.; Dang, T.-T.; Bui, T.-H. Performance evaluation of fishery enterprises using data envelopment analysis—A Malmquist Model. Mathematics 2021, 9, 469. [Google Scholar] [CrossRef]
- Wei, C.-K.; Chen, L.-C.; Li, R.-K.; Tsai, C.-H.; Huang, H.-L. A study of optimal weights of Data Envelopment Analysis–Development of a context-dependent DEA-R model. Expert Syst. Appl. 2012, 39, 4599–4608. [Google Scholar] [CrossRef]
- Van Khanh, N. Identify and Assess the Impact of Climate Change and Sea Level Rise to the System of Landfills and Solid Waste Treatment Facilities in the Central Coast Region of Vietnam. In Waste Management and Resource Efficiency; Springer: Berlin/Heidelberg, Germany, 2019; pp. 195–208. [Google Scholar]
No. | Authors | Year | DEA CCR | DEA BCC | DEA SBM | DEA Window | DEA Malmquist | (Fuzzy) TOPSIS | (Fuzzy) AHP |
---|---|---|---|---|---|---|---|---|---|
1 | Chandra et al. [31] | 1998 | x | ||||||
2 | Jahanshahloo and Khodabakhshi [32] | 2004 | x | ||||||
3 | Joshi et al. [38] | 2010 | x | ||||||
4 | Zhao et al. [40] | 2011 | x | ||||||
5 | Zarbini et al. [40,43] | 2011 | x | ||||||
6 | Yayla et al. [44] | 2012 | x | ||||||
7 | Le et al. [33] | 2014 | x | ||||||
8 | Zhang et al. [39] | 2014 | x | ||||||
9 | Jakhar [41] | 2015 | x | ||||||
10 | Wang et al. [8] | 2017 | x | ||||||
11 | Le and Wang [36] | 2017 | x | x | |||||
12 | Guarnieria and Trojan [42] | 2018 | x | ||||||
13 | Mehmet et al. [37] | 2019 | x | ||||||
14 | Tran et al. [34] | 2021 | x | x | |||||
15 | Nguyen and Vu [35] | 2021 | x | x |
DMU | Symbol | Companies Name | Stock Code |
---|---|---|---|
DMU1 | Viet Tien | Viet Tien Garment JSC | VGG |
DMU2 | Phong Phu | Phong Phu JSC | PHONG PHU CORP |
DMU3 | Ha Noi | Hanoi Textile and Garment JSC | HANOSIMEX |
DMU4 | Song Hong | Song Hong Garment JSC | MSH |
DMU5 | Garment 10 | Garment Corporation 10 JSC | M10 |
DMU6 | Binh Thanh | Binh Thanh Manufacturing, Trading and Import | GIL |
DMU7 | Thanh Cong | Thanh Cong Textile—Investment—Trading | TCM |
DMU8 | TNG | TNG Investment and Trading JSC | TNG |
DMU9 | Sai Gon | Garmex Saigon JSC | GMC |
DMU10 | TDT | TDT Investment and Development JSC | TDT |
Author | Input Factors | Output Factors |
---|---|---|
Wang et al. [8] | Total assets Cost of sold capital Selling expenses General and administration expenses | Revenue of sales Profit after tax |
Nham and Wang [33] | Fixed assets Capital Operating expenses | Net sales Earnings per share |
Tran et al. [34] | The average number of employees per month The wage fund Total capital Total cost | Total revenue Gross profit |
Wang et al. [30] | Total assets Owner’s equity Liabilities Operating expense | Total revenue Gross profit |
Wang et al. [49] | Total assets Equity Total liabilities Cost of sales | Total revenue Gross profit |
Wang et al. [29] | Total assets Cost of goods sold Operating expenses | Total revenue Gross profit |
Correlation | Degree of Correlation |
---|---|
>0.8 | Very high |
0.6–0.8 | High |
0.4–0.6 | Medium |
0.2–0.4 | Low |
<0.2 | Very low |
Data in 2017 (Currency Unit: Million USD) | |||||
DMUs | (I) Total Assets | (I) Cost of Goods Sold | (I) Liabilities | (O) Total Revenue | (O) Gross Profit |
DMU1 | 4,249,750 | 7,464,275 | 2,798,007 | 8,458,166 | 987,616 |
DMU2 | 5,311,729 | 2,734,374 | 3,661,196 | 3,024,185 | 286,249 |
DMU3 | 2,304,447 | 2,127,647 | 1,892,494 | 2,360,751 | 220,559 |
DMU4 | 2,380,600 | 2,717,910 | 1,625,380 | 3,282,451 | 563,976 |
DMU5 | 1,364,529 | 2,584,207 | 995,396 | 3,028,555 | 443,800 |
DMU6 | 1,487,143 | 1,816,545 | 927,325 | 2,169,958 | 353,414 |
DMU7 | 3,035,382 | 2,706,189 | 1,963,763 | 3,209,692 | 502,881 |
DMU8 | 2,225,690 | 2,051,588 | 1,596,422 | 2,491,019 | 437,019 |
DMU9 | 908,284 | 1,344,066 | 613,554 | 1,610,475 | 260,982 |
DMU10 | 209,183 | 170,869 | 114,868 | 217,062 | 45,713 |
Data in 2018 (Currency Unit: Million USD) | |||||
DMUs | (I) Total Assets | (I) Cost of Goods Sold | (I) Liabilities | (O) Total Revenue | (O) Gross Profit |
DMU1 | 4,701,038 | 8,546,828 | 3,031,269 | 9,719,646 | 1,170,171 |
DMU2 | 5,427,848 | 3,204,732 | 3,746,469 | 3,509,968 | 294,578 |
DMU3 | 2,510,675 | 2,287,968 | 1,943,307 | 2,558,537 | 257,531 |
DMU4 | 2,520,977 | 3,157,345 | 1,587,254 | 3,950,894 | 793,482 |
DMU5 | 1,569,492 | 2,513,677 | 1,194,869 | 2,980,318 | 466,347 |
DMU6 | 1,842,965 | 1,877,858 | 1,134,056 | 2,253,631 | 375,773 |
DMU7 | 3,247,326 | 2,983,240 | 1,970,928 | 3,664,445 | 678,771 |
DMU8 | 2,595,435 | 2,971,920 | 1,801,371 | 3,612,897 | 640,977 |
DMU9 | 1,010,674 | 1,675,340 | 630,076 | 2,045,323 | 363,560 |
DMU10 | 250,179 | 224,812 | 144,850 | 286,193 | 60,726 |
Data in 2019 (Currency Unit: Million USD) | |||||
DMUs | (I) Total Assets | (I) Cost of Goods Sold | (I) Liabilities | (O) Total Revenue | (O) Gross Profit |
DMU1 | 4,982,865 | 7,906,892 | 2,986,637 | 9,037,020 | 1,128,667 |
DMU2 | 4,535,136 | 3,045,489 | 2,994,898 | 3,350,394 | 290,202 |
DMU3 | 2,144,743 | 2,256,100 | 1,603,087 | 2,420,818 | 147,829 |
DMU4 | 2,566,212 | 3,482,815 | 1,330,468 | 4,411,872 | 928,438 |
DMU5 | 1,588,021 | 2,838,517 | 1,196,952 | 3,351,258 | 512,319 |
DMU6 | 1,898,449 | 2,158,896 | 1,061,974 | 2,538,355 | 379,459 |
DMU7 | 2,922,805 | 3,065,482 | 1,497,538 | 3,645,053 | 578,718 |
DMU8 | 3,027,410 | 3,825,318 | 1,960,689 | 4,617,542 | 786,906 |
DMU9 | 1,028,988 | 1,454,755 | 545,563 | 1,749,298 | 293,016 |
DMU10 | 340,830 | 284,522 | 185,807 | 366,130 | 80,481 |
Data in 2020 (Currency Unit: Million USD) | |||||
DMUs | (I) Total Assets | (I) Cost of Goods Sold | (I) Liabilities | (O) Total Revenue | (O) Gross Profit |
DMU1 | 4,736,189 | 6,450,347 | 2,823,291 | 7,123,237 | 670,612 |
DMU2 | 3,780,226 | 1,859,226 | 2,149,688 | 2,106,567 | 239,908 |
DMU3 | 1,806,969 | 1,209,500 | 1,271,631 | 1,344,824 | 115,786 |
DMU4 | 2,627,755 | 3,062,365 | 1,185,555 | 3,817,925 | 751,044 |
DMU5 | 1,588,766 | 2,978,495 | 1,193,577 | 3,453,925 | 468,808 |
DMU6 | 2,708,562 | 2,820,903 | 1,418,574 | 3,456,745 | 635,842 |
DMU7 | 2,976,423 | 2,849,534 | 1,337,688 | 3,470,466 | 620,183 |
DMU8 | 3,554,955 | 3,804,243 | 2,406,975 | 4,480,200 | 675,957 |
DMU9 | 1,222,790 | 1,272,030 | 564,362 | 1,474,983 | 202,537 |
DMU10 | 394,735 | 195,021 | 224,775 | 272,099 | 75,808 |
Total Assets (TA) | Cost of Goods Sold (CGS) | Liabilities (L) | Total Revenue (TR) | Gross Profit (GP) | ||
---|---|---|---|---|---|---|
2017 | TA | 1 | 0.6682 | 0.9929 | 0.6555 | 0.5182 |
CGS | 0.6682 | 1 | 0.6374 | 0.9991 | 0.9289 | |
L | 0.9929 | 0.6374 | 1 | 0.6227 | 0.4706 | |
TR | 0.6555 | 0.9991 | 0.6227 | 1 | 0.9439 | |
GP | 0.5182 | 0.9289 | 0.4706 | 0.9439 | 1 | |
2018 | TA | 1 | 0.7207 | 0.9910 | 0.7045 | 0.5115 |
CGS | 0.7207 | 1 | 0.6836 | 0.9981 | 0.8761 | |
L | 0.9910 | 0.6836 | 1 | 0.6629 | 0.4430 | |
TR | 0.7045 | 0.9981 | 0.6629 | 1 | 0.9040 | |
GP | 0.5115 | 0.8761 | 0.4430 | 0.9040 | 1 | |
2019 | TA | 1 | 0.8359 | 0.9762 | 0.8183 | 0.6106 |
CGS | 0.8359 | 1 | 0.7873 | 0.9972 | 0.8611 | |
L | 0.9762 | 0.7873 | 1 | 0.7606 | 0.5045 | |
TR | 0.8183 | 0.9972 | 0.7606 | 1 | 0.8965 | |
GP | 0.6106 | 0.8611 | 0.5045 | 0.8965 | 1 | |
2020 | TA | 1 | 0.8137 | 0.9503 | 0.8098 | 0.6328 |
CGS | 0.8137 | 1 | 0.8086 | 0.9967 | 0.7921 | |
L | 0.9503 | 0.8086 | 1 | 0.7922 | 0.5333 | |
TR | 0.8098 | 0.9967 | 0.7922 | 1 | 0.8389 | |
GP | 0.6328 | 0.7921 | 0.5333 | 0.8389 | 1 |
Catch-Up | 2017 ≥ 2018 | 2018 ≥ 2019 | 2019 ≥ 2020 | Average |
---|---|---|---|---|
DMU1 | 1.0576 | 0.9533 | 0.8735 | 0.9614 |
DMU2 | 1.0228 | 1.0865 | 0.9612 | 1.0235 |
DMU3 | 1.0037 | 1.0733 | 0.8508 | 0.9760 |
DMU4 | 1.1387 | 1.2597 | 0.9552 | 1.1179 |
DMU5 | 0.8086 | 1.1892 | 1.0914 | 1.0297 |
DMU6 | 0.8070 | 1.1033 | 1.0674 | 0.9926 |
DMU7 | 1.0428 | 1.0719 | 1.0654 | 1.0600 |
DMU8 | 0.9549 | 1.1081 | 0.8925 | 0.9852 |
DMU9 | 1.1339 | 0.8480 | 0.8471 | 0.9430 |
DMU10 | 0.9176 | 0.9955 | 1.1711 | 1.0281 |
Average | 0.9888 | 1.0689 | 0.9776 | 1.0117 |
Max | 1.1387 | 1.2597 | 1.1711 | 1.1179 |
Min | 0.8070 | 0.8480 | 0.8471 | 0.9430 |
SD | 0.1175 | 0.1162 | 0.1146 | 0.0516 |
Frontier | 2017 ≥ 2018 | 2018 ≥ 2019 | 2019 ≥ 2020 | Average |
---|---|---|---|---|
DMU1 | 1.0078 | 0.9627 | 0.9777 | 0.9827 |
DMU2 | 1.0199 | 0.9865 | 0.9697 | 0.9921 |
DMU3 | 1.0110 | 0.9727 | 0.9870 | 0.9902 |
DMU4 | 1.1670 | 1.0156 | 0.9213 | 1.0346 |
DMU5 | 1.0772 | 0.9555 | 0.9507 | 0.9945 |
DMU6 | 1.1355 | 0.9733 | 0.9592 | 1.0227 |
DMU7 | 1.1362 | 0.9992 | 0.9558 | 1.0304 |
DMU8 | 1.2057 | 0.9685 | 0.9668 | 1.0470 |
DMU9 | 1.1009 | 1.0283 | 0.9656 | 1.0316 |
DMU10 | 1.1095 | 1.1058 | 0.9987 | 1.0713 |
Average | 1.0971 | 0.9968 | 0.9652 | 1.0197 |
Max | 1.2057 | 1.1058 | 0.9987 | 1.0713 |
Min | 1.0078 | 0.9555 | 0.9213 | 0.9827 |
SD | 0.0680 | 0.0449 | 0.0212 | 0.0289 |
Malmquist | 2017 ≥ 2018 | 2018 ≥ 2019 | 2019 ≥ 2020 | Average |
---|---|---|---|---|
DMU1 | 1.0659 | 0.9177 | 0.8540 | 0.9459 |
DMU2 | 1.0431 | 1.0719 | 0.9321 | 1.0157 |
DMU3 | 1.0148 | 1.0441 | 0.8397 | 0.9662 |
DMU4 | 1.3289 | 1.2794 | 0.8800 | 1.1628 |
DMU5 | 0.8710 | 1.1363 | 1.0376 | 1.0149 |
DMU6 | 0.9164 | 1.0739 | 1.0239 | 1.0047 |
DMU7 | 1.1848 | 1.0710 | 1.0183 | 1.0914 |
DMU8 | 1.1513 | 1.0732 | 0.8629 | 1.0291 |
DMU9 | 1.2482 | 0.8720 | 0.8180 | 0.9794 |
DMU10 | 1.0182 | 1.1008 | 1.1697 | 1.0962 |
Average | 1.0843 | 1.0640 | 0.9436 | 1.0306 |
Max | 1.3289 | 1.2794 | 1.1697 | 1.1628 |
Min | 0.8710 | 0.8720 | 0.8180 | 0.9459 |
SD | 0.1438 | 0.1115 | 0.1141 | 0.0671 |
Year | Total Assets | Cost of Goods Sold | Liabilities | Total Revenue | Gross Profit | |
---|---|---|---|---|---|---|
2017 | Max | 5,311,729 | 7,464,275 | 3,661,196 | 8,458,166 | 987,616 |
Min | 209,183 | 170,869 | 114,868 | 217,062 | 45,713 | |
Average | 2,347,674 | 2,571,767 | 1,618,841 | 2,985,231 | 410,221 | |
SD | 1,457,613 | 1,797,565 | 994,759 | 2,023,530 | 240,242 | |
2018 | Max | 5,427,848 | 8,546,828 | 3,746,469 | 9,719,646 | 1,170,171 |
Min | 250,179 | 224,812 | 144,850 | 286,193 | 60,726 | |
Average | 2,567,661 | 2,944,372 | 1,718,445 | 3,458,185 | 510,192 | |
SD | 1,500,552 | 2,055,801 | 1,012,481 | 2,325,171 | 302,521 | |
2019 | Max | 4,982,865 | 7,906,892 | 2,994,898 | 9,037,020 | 1,128,667 |
Min | 340,830 | 284,522 | 185,807 | 366,130 | 80,481 | |
Average | 2,503,546 | 3,031,879 | 1,536,361 | 3,548,774 | 512,604 | |
SD | 1,375,254 | 1,898,330 | 872,064 | 2,185,320 | 326,690 | |
2020 | Max | 4,736,189 | 6,450,347 | 2,823,291 | 7,123,237 | 751,044 |
Min | 394,735 | 195,021 | 224,775 | 272,099 | 75,808 | |
Average | 2,539,737 | 2,650,166 | 1,457,612 | 3,100,097 | 445,649 | |
SD | 1,240,867 | 1,635,481 | 758,772 | 1,835,806 | 247,207 |
Year | Input/Output | Total Assets | Cost of Goods Sold | Liabilities | Total Revenue | Gross Profit |
---|---|---|---|---|---|---|
2017 | Total assets | 1 | 0.6682 | 0.9929 | 0.6555 | 0.5182 |
Cost of goods sold | 0.6682 | 1 | 0.6374 | 0.9991 | 0.9289 | |
Liabilities | 0.9929 | 0.6374 | 1 | 0.6227 | 0.4706 | |
Total revenue | 0.6555 | 0.9991 | 0.6227 | 1 | 0.9439 | |
Gross profit | 0.5182 | 0.9289 | 0.4706 | 0.9439 | 1 | |
2018 | Total assets | 1 | 0.7207 | 0.9910 | 0.7045 | 0.5115 |
Cost of goods sold | 0.7207 | 1 | 0.6836 | 0.9981 | 0.8761 | |
Liabilities | 0.9910 | 0.6836 | 1 | 0.6629 | 0.4430 | |
Total revenue | 0.7045 | 0.9981 | 0.6629 | 1 | 0.9040 | |
Gross profit | 0.5115 | 0.8761 | 0.4430 | 0.9040 | 1 | |
Total assets | 1 | 0.8359 | 0.9762 | 0.8183 | 0.6106 | |
2019 | Cost of goods sold | 0.8359 | 1 | 0.7873 | 0.9972 | 0.8611 |
Liabilities | 0.9762 | 0.7873 | 1 | 0.7606 | 0.5045 | |
Total revenue | 0.8183 | 0.9972 | 0.7606 | 1 | 0.8965 | |
Gross profit | 0.6106 | 0.8611 | 0.5045 | 0.8965 | 1 | |
Total assets | 1 | 0.8137 | 0.9503 | 0.8098 | 0.6328 | |
2020 | Cost of goods sold | 0.8137 | 1 | 0.8086 | 0.9967 | 0.7921 |
Liabilities | 0.9503 | 0.8086 | 1 | 0.7922 | 0.5333 | |
Total revenue | 0.8098 | 0.9967 | 0.7922 | 1 | 0.8389 | |
Gross profit | 0.6328 | 0.7921 | 0.5333 | 0.8389 | 1 |
Period | Input | Total Assets | Cost of Goods Sold | Liabilities |
---|---|---|---|---|
2017 | Total assets | 0 | 0.2769 | 0.1711 |
Cost of goods sold | 0.2769 | 0 | 0.2807 | |
Liabilities | 0.1711 | 0.2807 | 0 | |
2018 | Total assets | 0 | 0.2230 | 0.1448 |
Cost of goods sold | 0.2230 | 0 | 0.2480 | |
Liabilities | 0.1448 | 0.2480 | 0 | |
2019 | Total assets | 0 | 0.1382 | 0.2118 |
Cost of goods sold | 0.1382 | 0 | 0.1790 | |
Liabilities | 0.2118 | 0.1790 | 0 | |
2020 | Total assets | 0 | 0.1467 | 0.2520 |
Cost of goods sold | 0.1467 | 0 | 0.1722 | |
Liabilities | 0.2520 | 0.1722 | 0 |
Period | Input | Total Assets | Cost of Goods Sold | Liabilities |
---|---|---|---|---|
2017 | Total assets | 1 | 0.4461 | 0.6579 |
Cost of goods sold | 0.4461 | 1 | 0.4387 | |
Liabilities | 0.6579 | 0.4387 | 1 | |
2018 | Total assets | 1 | 0.5541 | 0.7104 |
Cost of goods sold | 0.5541 | 1 | 0.5041 | |
Liabilities | 0.7104 | 0.5041 | 1 | |
2019 | Total assets | 1 | 0.7237 | 0.5765 |
Cost of goods sold | 0.7237 | 1 | 0.6421 | |
Liabilities | 0.5765 | 0.6421 | 1 | |
2020 | Total assets | 1 | 0.7065 | 0.4961 |
Cost of goods sold | 0.7065 | 1 | 0.6556 | |
Liabilities | 0.4961 | 0.6556 | 1 |
Period | Total Assets | Cost of Goods Sold | Liabilities |
---|---|---|---|
2017 | 0.3510 | 0.2993 | 0.3497 |
2018 | 0.3496 | 0.3090 | 0.3414 |
2019 | 0.3349 | 0.3453 | 0.3198 |
2020 | 0.3281 | 0.3541 | 0.3178 |
Year | Epsilon Indicator |
---|---|
2017 | 0.4821 |
2018 | 0.4082 |
2019 | 0.3517 |
2020 | 0.3785 |
Symbol | DMUs | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|
Viet Tien | DMU1 | 0.9733 | 1 | 0.9722 | 0.8987 |
Phong Phu | DMU2 | 0.7141 | 0.7299 | 0.7571 | 0.7709 |
Ha Noi | DMU3 | 0.7742 | 0.7860 | 0.7806 | 0.7769 |
Song Hong | DMU4 | 0.9500 | 1 | 1 | 1 |
Garment 10 | DMU5 | 1 | 0.9382 | 1 | 1 |
Binh Thanh | DMU6 | 0.9517 | 0.8773 | 0.8871 | 0.9427 |
Thanh Cong | DMU7 | 0.8544 | 0.8914 | 0.8905 | 0.9346 |
TNG | DMU8 | 0.8992 | 0.8992 | 0.9179 | 0.8909 |
Sai Gon | DMU9 | 1 | 1 | 0.9748 | 0.9034 |
TDT | DMU10 | 1 | 0.9986 | 0.9635 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-N.; Nguyen, P.-T.T.; Wang, Y.-H.; Dang, T.-T. A Study of Performance Evaluation for Textile and Garment Enterprises. Processes 2022, 10, 2381. https://doi.org/10.3390/pr10112381
Wang C-N, Nguyen P-TT, Wang Y-H, Dang T-T. A Study of Performance Evaluation for Textile and Garment Enterprises. Processes. 2022; 10(11):2381. https://doi.org/10.3390/pr10112381
Chicago/Turabian StyleWang, Chia-Nan, Phuong-Thuy Thi Nguyen, Yen-Hui Wang, and Thanh-Tuan Dang. 2022. "A Study of Performance Evaluation for Textile and Garment Enterprises" Processes 10, no. 11: 2381. https://doi.org/10.3390/pr10112381
APA StyleWang, C. -N., Nguyen, P. -T. T., Wang, Y. -H., & Dang, T. -T. (2022). A Study of Performance Evaluation for Textile and Garment Enterprises. Processes, 10(11), 2381. https://doi.org/10.3390/pr10112381