Development of FT-NIR Technique to Determine the Ripeness of Sweet Cherries and Sour Cherries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Reference Methods
Dry Matter Content (DM)
Titratable Acidity (A)
Water Soluble Solids—Brix° (SSC)
Anthocyanin Content (TA)
Sugar:Acid Ratio (SSC/A)—Maturity Index
2.2.2. FT-NIR Measurements
Sample Preparation
Measurements
Evaluation of FT-NIR Spectra
2.2.3. Chemometric Methods
Principal Component Analysis—PCA
Partial Least Squares Method—PLS Regression
Linear Discriminant Analysis—LDA
Quadratic Discriminant Analysis—QDA
Discriminant Analysis Based on Mahalanobis Distance
Support Vector Machine Classification (SVM)
3. Results
3.1. Reference Results
3.2. NIR Spectra Evaluation
3.3. Chemometric Evaluation
3.3.1. Principal Component Analysis—PCA
3.3.2. Partial Least Square Regression—PLS
3.3.3. Pattern Recognition Methods
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mande, A.; Gurav, G.; Ajgaonkar, K.; Ombase, P.; Bagul, V. Detection of fruit ripeness using image processing. In ICACDS 2018: Advances in Computing and Data Sciences; Singh, M., Gupta, P., Tyagi, V., Flusser, J., Ören, T., Eds.; Springer: Singapore, 2018; Volume 906, pp. 545–555. ISBN 9789811318139. [Google Scholar]
- Seymour, G.B.; Østergaard, L.; Chapman, N.H.; Knapp, S.; Martin, C. Fruit development and ripening. In Plant Physiology, Development and Metabolism; Bhatla, S.C.A., Lal, M., Eds.; Springer: Singapore, 2018; pp. 857–883. ISBN 9789811320231. [Google Scholar]
- Kumar, S. Chapter 17—Fruit science. In Fruit Maturity and Ripening; New India Publishing Agency: New Delhi, India, 2019; pp. 357–373. ISBN 978-93-86546-24-1. [Google Scholar]
- Sharma, S.; Sumesh, K.C.; Sirisomboon, P. Rapid Ripening Stage Classification and Dry Matter Prediction of Durian Pulp Using a Pushbroom near Infrared Hyperspectral Imaging System. Measurement 2022, 189, 110464. [Google Scholar] [CrossRef]
- Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors 2015, 15, 11889–11927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wei, Y.; Xu, J.; Feng, X.; Wu, F.; Zhou, R.; Jin, J.; Xu, K.; Yu, X.; He, Y. SSC and PH for Sweet Assessment and Maturity Classification of Harvested Cherry Fruit Based on NIR Hyperspectral Imaging Technology. Postharvest Biol. Technol. 2018, 143, 112–118. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Fan, Y.; Qiu, Z.; He, Y. SeeFruits: Design and Evaluation of a Cloud-Based Ultra-Portable NIRS System for Sweet Cherry Quality Detection. Comput. Electron. Agric. 2018, 152, 302–313. [Google Scholar] [CrossRef]
- Castro-Giráldez, M.; Fito, P.J.; Chenoll, C.; Fito, P. Development of a Dielectric Spectroscopy Technique for the Determination of Apple (Granny Smith) Maturity. Innov. Food Sci. Emerg. Technol. 2010, 11, 749–754. [Google Scholar] [CrossRef]
- Antoniolli, L.R.; Czermainski, A.B.C. Maturity Index and Cold Storage Effects on Postharvest Quality of “Packham’s Triumph” and “Rocha” Pears. Acta Hortic. 2012, 934, 865–870. [Google Scholar] [CrossRef]
- Mishra, P.; Woltering, E.; El Harchioui, N. Improved Prediction of ‘Kent’ Mango Firmness during Ripening by near-Infrared Spectroscopy Supported by Interval Partial Least Square Regression. Infrared Phys. Technol. 2020, 110, 103459. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Campos, G.; Alves, G.; Garcia-Viguera, C.; Moreno, D.A.; Silva, L.R. Physical and Phytochemical Composition of 23 Portuguese Sweet Cherries as Conditioned by Variety (or Genotype). Food Chem. 2021, 335, 127637. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Y.; Yang, Y.; Mu, B.; Nikitina, M.A.; Xiao, X. Vis/NIR Optical Biosensors Applications for Fruit Monitoring. Biosens. Bioelectron. X 2022, 11, 100197. [Google Scholar] [CrossRef]
- Nagpala, E.G.L.; Noferini, M.; Farneti, B.; Piccinini, L.; Costa, G. Cherry-Meter: An Innovative Non-Destructive (Vis/NIR) Device for Cherry Fruit Ripening and Quality Assessment. Acta Hortic. 2017, 1161, 491–496. [Google Scholar] [CrossRef]
- Escribano, S.; Biasi, W.V.; Lerud, R.; Slaughter, D.C.; Mitcham, E.J. Non-Destructive Prediction of Soluble Solids and Dry Matter Content Using NIR Spectroscopy and Its Relationship with Sensory Quality in Sweet Cherries. Postharvest Biol. Technol. 2017, 128, 112–120. [Google Scholar] [CrossRef]
- Shao, Y.; Xuan, G.; Hu, Z.; Gao, Z.; Liu, L. Determination of the Bruise Degree for Cherry Using Vis-NIR Reflection Spectroscopy Coupled with Multivariate Analysis. PLoS ONE 2019, 14, e0222633. [Google Scholar] [CrossRef] [PubMed]
- Schuck, P.; Dolivet, A.; Jeantet, R. Determination of dry matter and total dry matter. In Analytical Methods for Food and Dairy Powders; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 45–57. ISBN 978-1-118-30739-7. [Google Scholar]
- International Fruit and Vegetable Juice Association. IFU Methode: Titratable Acidity; International Fruit and Vegetable Juice Association: Paris, France, 2017. [Google Scholar]
- Chockchaisawasdee, S.; Golding, J.B.; Vuong, Q.V.; Papoutsis, K.; Stathopoulos, C.E. Sweet Cherry: Composition, Postharvest Preservation, Processing and Trends for Its Future Use. Trends Food Sci. Technol. 2016, 55, 72–83. [Google Scholar] [CrossRef]
- Lao, F.; Giusti, M.M. Quantification of Purple Corn (Zea Mays L.) Anthocyanins Using Spectrophotometric and HPLC Approaches: Method Comparison and Correlation. Food Anal. Methods 2016, 9, 1367–1380. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.G.; Vance, T.M.; Nam, T.-G.; Kim, D.-O.; Koo, S.I.; Chun, O.K. Evaluation of PH Differential and HPLC Methods Expressed as Cyanidin-3-Glucoside Equivalent for Measuring the Total Anthocyanin Contents of Berries. Food Meas. 2016, 10, 562–568. [Google Scholar] [CrossRef]
- Pereira, S.; Silva, V.; Bacelar, E.; Guedes, F.; Silva, A.P.; Ribeiro, C.; Gonçalves, B. Cracking in Sweet Cherry Cultivars Early Bigi and Lapins: Correlation with Quality Attributes. Plants 2020, 9, 1557. [Google Scholar] [CrossRef]
- Ringnér, M. What Is Principal Component Analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef]
- Naes, T.; Isaksson, T.; Fearn, T.; Davies, T. Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2004; ISBN 0-9528666-2-5. [Google Scholar]
- Vandeginste, B.G.M.; Massart, D.L.; Buydens, L.M.C.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. Multivariate calibration. In Data Handling in Science and Technology; Elsevier: Amsterdam, The Netherlands, 1998; Volume 20, pp. 349–381. ISBN 978-0-444-82853-8. [Google Scholar]
- Esbensen, K.H.; Geladi, P. Principles of Proper Validation: Use and Abuse of Re-Sampling for Validation. J. Chemom. 2010, 24, 168–187. [Google Scholar] [CrossRef]
- Tharwat, A. Linear Discriminant Analysis: An Overview. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef]
- Wu, W.; Mallet, Y.; Walczak, B.; Penninckx, W.; Massart, D.L.; Heuerding, S.; Erni, F. Comparison of Regularized Discriminant Analysis Linear Discriminant Analysis and Quadratic Discriminant Analysis Applied to NIR Data. Anal. Chim. Acta 1996, 329, 257–265. [Google Scholar] [CrossRef]
- Tharwat, A. Linear vs. Quadratic Discriminant Analysis Classifier: A Tutorial. Int. J. Appl. Pattern Recognit. 2016, 3, 145–180. [Google Scholar] [CrossRef]
- Brereton, R.G.; Lloyd, G.R. Re-Evaluating the Role of the Mahalanobis Distance Measure. J. Chemom. 2016, 30, 134–143. [Google Scholar] [CrossRef]
- Gholami, R.; Fakhari, N. Chapter 27—Support vector machine: Principles, parameters, and applications. In Handbook of Neural Computation; Samui, P., Sekhar, S., Balas, V.E., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 515–535. ISBN 978-0-12-811318-9. [Google Scholar]
- Vavoura, M.V.; Badeka, A.V.; Kontakos, S.; Kontominas, M.G. Characterization of Four Popular Sweet Cherry Cultivars Grown in Greece by Volatile Compound and Physicochemical Data Analysis and Sensory Evaluation. Molecules 2015, 20, 1922–1940. [Google Scholar] [CrossRef] [Green Version]
- Horák, M.; Goliáš, J.; Hí c, P.; Němcová, A.; Kulichová, J. The Effect of Post-Harvest Treatment on the Quality of Sweet Cherries during Storage. Potravin. Slovak J. Food Sci. 2016, 10, 570–577. [Google Scholar] [CrossRef] [Green Version]
- Ricardo-Rodrigues, S.; Laranjo, M.; Agulheiro-Santos, A.C. Methods for Quality Evaluation of Sweet Cherry. J. Sci. Food Agric. 2022. [Google Scholar] [CrossRef]
- San Martino, L.; Manavella, F.A.; García, D.A.; Salato, G. Phenology and Fruit Quality of Nine Sweet Cherry Cultivars in South Patagonia. Acta Hortic. 2008, 795, 841–848. [Google Scholar] [CrossRef]
- Chaovanalikit, A.; Wrolstad, R.E. Anthocyanin and Polyphenolic Composition of Fresh and Processed Cherries. J. of Food Sci. 2004, 69, FCT73–FCT83. [Google Scholar] [CrossRef]
- Dziedzic, E.; Bieniasz, M.; Kowalczyk, B. Morphological and Physiological Features of Sweet Cherry Floral Organ Affecting the Potential Fruit Crop in Relation to the Rootstock. Sci. Hortic. 2019, 251, 127–135. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, F.; Zan, S.; Gao, C.; Tian, C.; Meng, X. Quality Characteristics and Inhibitory Xanthine Oxidase Potential of 21 Sour Cherry (Prunus Cerasus L.) Varieties Cultivated in China. Front. Nutr. 2021, 8, 796294. [Google Scholar] [CrossRef]
- Ficzek, G.; Bujdosó, G.; Tóth, M.; Stéger-Máté, M.; Nótin, B.; Kállay, E.; Szügyi, S. Changes in the Antioxidant Components in Hungarian Bred Sour Cherry Cultivars during the Ripening Period. Acta Hortic. 2014, 1040, 83–88. [Google Scholar] [CrossRef]
- Damar, İ.; Ekşi, A. Antioxidant Capacity and Anthocyanin Profile of Sour Cherry (Prunus Cerasus L.) Juice. Food Chem. 2012, 135, 2910–2914. [Google Scholar] [CrossRef] [PubMed]
- Sarangwong, S.; Kawano, S. Fruits and vegetables. In Near-Infrared Spectroscopy in Food Science and Technology; Ozaky, Y., McClure, W.F., Christy, A.A., Eds.; Whiley: Hoboken, NJ, USA, 2007; pp. 219–245. ISBN 978-0-471-67201-2. [Google Scholar]
- Workman, J.; Weyer, L. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-57444-784-2. [Google Scholar]
- Mcbratney, A.; Minasny, B. Why You Don’t Need to Use RPD. Pedometron 2013, 33, 14–15. [Google Scholar]
- Esbensen, K.H.; Geladi, P.; Larsen, A. The RPD Myth…. NIR News 2014, 25, 24–28. [Google Scholar] [CrossRef]
Parameters | Measurement Interval, nm | Chemometric Method | Accuracy; R2 | Reference |
---|---|---|---|---|
SSC, TA | 560; 640; 750 | n.i. | SSC/IAD: 0.99 TA/IAD: 0.93 | [13] |
SSC, DM, A | 729–975 | PLS | SSC *: 0.925–0.938 DM *: 0.916–0.924 | [14] |
SSC; pH | 972–1649 | PCR; PLSR | classification 96.4% | [6] |
TSS, maturity level | “SeeFruits” | PLS; LDA; SVC; LR; LDA; PCR; LMR | classification: SVC: 0.89, Logistic-R: 0.83, LDA: 0.80 qualification: MLR: 0.77; PCR: 0.83; PLS: 0.83; SVR: 0.74 | [7] |
bruise degree | 350–2500 | PCA, LS-SVM, SPA | LS-SVM: 93.3%; SPA: 97.3% | [15] |
Parameters | Calibration | Validation | Aim |
---|---|---|---|
Notation | |||
Square of the determination coefficient | R2 | Q2 | To be as close as possible to 1 |
Mean squared error | RMSEC | RMSECV; RMSEP | As small as possible |
PLS principal component | 3–10 | 3–10 | Below 3 the function is under-fitted, above 10 it is over-fitted |
RPD—Ratio of Performance to Deviation | (1−R2)−0.5 | (1−Q2)−0.5 | if >3, the function is suitable for quantitative evaluation |
bias | <0.1 RMSECV; <0.1 RMSEP | To be at least one order of magnitude smaller than the average error |
Sweet Cherry | |||
Parameters | Concentration Range | Reference Data for Ripe Fruit | Reference |
DM; % w/w | 14.70–36.01 | 20.0 | [32,33,34,35] |
A; % w/w | 0.39–1.31 | 0.24 | |
SSC; g/100 mL | 8.7–22.4 | ≥14.8 | |
TA; % w/w | 0–158.8 | 81.2 | [36] |
SSC/A | 10.80–36.14 | 25.4–28.7 | [37] |
Sour Cherry | |||
Parameters | Concentration Range | Reference Data for Ripe Fruit | Reference |
DM; % w/w | 16.43–32.58 | 26.0 | [38] |
A; % w/w | 1.34–3.04 | 1.05 | |
SSC; g/100 mL | 9.25–17.85 | ≥17.6 | |
TA; % w/w | 0–164.1 | ˃90 | [39,40] |
SSC/A | 3.74–12.41 | 8.3–18.6 | [38] |
Mark | Parameter | Wavenumber (cm−1) |
---|---|---|
1 | Soluble Solids Content (Brix°) | 4760; 4400; 4290–4250 |
2 | Titratable Acidity | 8100–7500; 5170–5100; 4830–4650 |
3 | Total Anthocyanin | 8750–8600; 7110–6900; 6850; 6370; 4750–4650; 4390–4370 |
Calibration | Cross-Validation | RPD | Data Preprocessing | ||||
R2 | RMSEE | Rank | Q2 | RMSECV | |||
DM | 0.966 | 1.05 | 9 | 0.948 | 1.25 | 4.35 | 1st + SNV |
A | 0.977 | 0.13 | 8 | 0.966 | 0.14 | 5.46 | 1st |
SSC | 0.954 | 0.67 | 8 | 0.908 | 0.97 | 3.3 | 1st + SNV |
TA | 0.937 | 14.0 | 7 | 0.894 | 17.5 | 3.06 | 1st + SNV |
SSC/A | 0.959 | 1.27 | 8 | 0.925 | 1.66 | 3.92 | 1st |
Calibration | Test Set Validation | RPD | Data Preprocessing | ||||
R2 | RMSEE | Rank | Q2 | RMSEP | |||
DM | 0.957 | 1.14 | 7 | 0.939 | 1.46 | 4.07 | 1st + SNV |
A | 0.979 | 0.12 | 9 | 0.938 | 0.19 | 4.06 | 1st |
SSC | 0.955 | 0.72 | 7 | 0.897 | 0.99 | 3.16 | 1st + SNV |
TA | 0.956 | 11.6 | 7 | 0.902 | 16.9 | 3.31 | 1st + SNV |
SSC/A | 0.959 | 1.24 | 7 | 0.939 | 1.59 | 3.82 | 1st |
Sweet Cherry | Sour Cherry | |
---|---|---|
Mature | ||
A; % w/w | 0.70–0.80 | 2.00–2.40 |
SSC; g/100 mL | ≥13.0 | ≥12.4 |
TA; % w/w | ≥70.0 | ≥70.0 |
SSC/A | ≥15.0 | ≥7.1 |
Total Titratable Acidity (A) | ||||
Mature | Immature | Accuracy | Misclassification (Pieces) | |
Mature | 61 | 9 | 89.06% | 14 |
Immature | 5 | 53 | ||
Soluble Sugar Content (SSC) | ||||
Mature | 65 | 2 | 89.84% | 13 |
Immature | 11 | 50 | ||
Total Anthocyanin (TA) | ||||
Mature | 71 | 1 | 93.75% | 8 |
Immature | 7 | 49 | ||
Maturity Index (SSC/A) | ||||
Mature | 67 | 5 | 89.06% | 14 |
Immature | 9 | 47 |
Maturity Degree (MD) | ||||
---|---|---|---|---|
Mature | Immature | Accuracy | Misclassification (Pieces) | |
Mature | 64 | 0 | 98.44% | 2 |
Immature | 2 | 62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fodor, M. Development of FT-NIR Technique to Determine the Ripeness of Sweet Cherries and Sour Cherries. Processes 2022, 10, 2423. https://doi.org/10.3390/pr10112423
Fodor M. Development of FT-NIR Technique to Determine the Ripeness of Sweet Cherries and Sour Cherries. Processes. 2022; 10(11):2423. https://doi.org/10.3390/pr10112423
Chicago/Turabian StyleFodor, Marietta. 2022. "Development of FT-NIR Technique to Determine the Ripeness of Sweet Cherries and Sour Cherries" Processes 10, no. 11: 2423. https://doi.org/10.3390/pr10112423
APA StyleFodor, M. (2022). Development of FT-NIR Technique to Determine the Ripeness of Sweet Cherries and Sour Cherries. Processes, 10(11), 2423. https://doi.org/10.3390/pr10112423