Modeling and Optimization of Continuous Viral Vaccine Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Results
2.2. Continuous Vaccine Production Model with Viral Latency
2.3. Transition to Semi-Continuous Modeling
2.4. Parameter Estimation
2.5. Sensitivity Analysis
2.6. Optimization and Flowsheet Modeling
3. Results
3.1. Parameter Estimation Results
3.2. Additional Parameter Estimations for Other Viral Vaccines
3.3. Model Comparisons
Comparison of Literature Model, Latent-Phase Model, and Experimental Results
3.4. Semi-Continuous Flowsheet Modeling
3.5. Sensitivity Analysis and Optimization
Sensitivity Analysis Results
3.6. Optimization and Flowsheet Modeling Results
4. Discussion
4.1. Parameter Estimation for Other Viral Vaccines
4.2. Comparison of Literature Model, Latent-Phase Model, and Experimental Results
4.3. Semi-Continuous Modeling
4.4. Sensitivity Analysis
4.5. Optimization and Flowsheet Modeling
5. Conclusions
6. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauchemin, C.A.; Handel, A. A review of mathematical models of Influenza A infections within a host or cell culture: Lessons learned and challenges ahead. BMC Public Health 2017, 11, 1471–2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allison, G.; Cooney, C.Y.; Garcia, C.; Bizjak, T.; Holte, T.G.; Jagota, O.; Komas, N.; Korakianiti, B.; Kourti, E.; Madurawe, D.; et al. Regulatory and Quality Considerations for Continuous Manufacturing. J. Pharm. Sci. 2015, 3, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Frensing, T. Defective interfering viruses and their impact on vaccines and viral vectors. Biotechnol. J. 2015, 10, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Holder, B.P.; Beauchemin, C.A. Exploring the effect of biological delays in kinetic models of Influenza within a host or cell culture. BMC Public Health 2011, 11 (Suppl. S1), S10. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, A.L. The dependence of viral parameter estimates on the assumed viral life cycle: Limitations of studies of viral load data. Proc. Biol. Sci. 2001, 268, 847–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wearing, H.J.; Rohani, P.; Keeling, M.J. Appropriate models for the management of infectious diseases. PLoS Med. 2005, 2, e174. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, C. Probing the effects of the well-mixed assumption on viral infection dynamics. J. Theor. Biol. 2006, 242, 464–477. [Google Scholar] [CrossRef] [Green Version]
- Frensing, T.; Heldt, F.S.; Pflugmacher, A.; Behrendt, I.; Jordan, I.; Flockerzi, D.; Genzel, Y.; Reichl, U. Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles. PLoS ONE 2013, 8, e72288. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.F.; de La Vega, M.-A.; Paradis, E.; Mendoza, E.; Coombs, K.M.; Kobasa, D.; Beauchemin, C.A.A. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses. Sci. Rep. 2016, 6, 24154. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.C.; Kamga, M.-H.; Agarabi, C.; Brorson, K.; Lee, S.L.; Yoon, S. The Current Scientific and Regulatory Landscape in Advancing Integrated Continuous Biopharmaceutical Manufacturing. Trends Biotechnol. 2019, 37, 253–267. [Google Scholar] [CrossRef]
- Traylen, C.M.; Patel, H.R.; Fondaw, W.; Mahatme, S.; Williams, J.F.; Walker, L.R.; Dyson, O.F.; Arce, S.; Akula, S.M. Virus reactivation: A panoramic view in human infections. Future Virol. 2011, 6, 451–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cori, A.; Valleron, A.; Carrat, F.; Tomba, G.S.; Thomas, G.; Boëlle, P. Estimating influenza latency and infectious period durations using viral excretion data. Epidemics 2012, 4, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Tuckwell, H. Viral Population Growth Models. In Encyclopedia of Biostatistics; Armitage, P., Colton, T., Eds.; John Wiley & Sons Canada: Toronto, ON, Canada, 2005. [Google Scholar]
- Bocharov, G.A.; Romanyukha, A.A. Mathematical model of antiviral immune response. III. Influenza A virus infection. J. Theor. Biol. 1994, 167, 323–360. [Google Scholar] [CrossRef] [PubMed]
- Steinmeyer, S.H.; Wilke, C.O.; Pepin, K.M. Methods of modelling viral disease dynamics across the within- and between-host scales: The impact of virus dose on host population immunity. Philos. Trans. R Soc. Lond B Biol. Sci. 2010, 365, 1931–1941. [Google Scholar] [CrossRef] [Green Version]
- Perrin, P.; Madhusudana, S.; Gontier-Jallet, C.; Petres, S.; Tordo, N.; Merten, O.-W. An experimental rabies vaccine produced with a new BHK-21 suspension cell culture process: Use of serum-free medium and perfusion-reactor system. Vaccine 1995, 13, 1244–1250. [Google Scholar] [CrossRef]
- Whistler, T.; Bellini, W.J.; Rota, P.A. Generation of defective interfering particles by two vaccine strains of measles virus. Virology 1996, 220, 480–484. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, J.J.; Torremorell, M.; Craft, M.E. Mathematical modeling of Influenza A virus dynamics within swine farms and the effects of vaccination. PLoS ONE 2014, 9, e106177. [Google Scholar] [CrossRef]
- Dimmock, N.J.; Marriott, A.C. In vivo antiviral activity: Defective interfering virus protects better against virulent Influenza A virus than avirulent virus. J. Gen. Virol. 2006, 87 Pt 5, 1259–1265. [Google Scholar] [CrossRef]
- Process Systems Enterprise. gPROMS. 1997–2020. Available online: www.psenterprise.com/products/gproms (accessed on 10 April 2021).
- Hope-Simpson, R.E.; Golubev, D.B. A new concept of the epidemic process of influenza A virus. Epidemiol. Infect. 1987, 99, 5–54. [Google Scholar] [CrossRef] [Green Version]
- Tarro, G. Viral latency, molecular pathogenesis and malignancy. Glob. J. Sci. Front. Res. 2014, 14, 55–60. [Google Scholar]
- Lieberman, P.M. Epigenetics and genetics of viral latency. Cell Host Microbe 2016, 19, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Preston, C.M. Repression of viral transcription during herpes simplex virus latency. J. Gen. Virol. 2000, 81, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Duvigneau, S.; Dürr, R.; Laske, T.; Bachmann, M.; Dostert, M.; Reichl, U.; Kienle, A. Mathematical modeling as a tool to improve influenza vaccine production processes. IFAC PapersOnLine 2018, 51, 1–4. [Google Scholar] [CrossRef]
- Sidorenko, Y.; Schulze-Horsel, J.; Voigt, A.; Reichl, U.; Kienle, A. Stochastic population balance modeling of influenza virus replication in vaccine production processes. Chem. Eng. Sci. 2008, 63, 157–169. [Google Scholar] [CrossRef]
- Dürr, R.; Duvigneau, S.; Laske, T.; Bachmann, M.; Kienle, A. Analyzing the impact of heterogeneity in genetically engineered cell lines for influenza vaccine production using population balance modeling. IFAC PapersOnLine 2016, 49, 225–230. [Google Scholar] [CrossRef]
- Dürr, R. Parameter Estimation and Method of Moments for Multi-Dimensional Population Balance Equations with Application to Vaccine Production Processes. Doctoral Dissertation, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany, 2016. [Google Scholar]
- Müller, T.; Dürr, R.; Isken, B.; Schulze-Horsel, J.; Reichl, U.; Kienle, A. Distributed modeling of human influenza a virus–host cell interactions during vaccine production. Biotechnol. Bioeng. 2013, 110, 2252–2266. [Google Scholar] [CrossRef]
- Ochoa, J.D.; Voigt, A.; Briesen, H.; Sundmacher, K. Modeling of innate immune responses of cells for vaccine production. Chem. Eng. Sci. 2011, 66, 3954–3961. [Google Scholar] [CrossRef]
Parameter | Definition | Value |
---|---|---|
µ | Specific Growth Rate (1/h) | 0.027 |
D | Dilution Rate (1/h) | 0.0396 |
f | Fraction of Produced DIPs | 10−3 |
k1 | Virus Infection Rate (mL/virion/h) | 1 × 10−8 |
k2 | Apoptosis Rate of Infected Cells (1/h) | 8 × 10−11 |
k3 | Virus Production Rate (virion/mL/cell) | 5 |
k4 | Virus Degradation Rate (1/h) | 0.035 |
Tin | Cell Concentration in the Feed (cells) | 3 × 106 |
k | Latent-Phase Constant (mL/virions/h) | 8 × 10−13 |
T (initial) | Target Cell Population (cells) | 5 × 106 |
Is (initial) | Cells Infected with STVs Population (cells) | 0 |
Id (initial) | Cells Infected with DIPs Population (cells) | 0 |
Ic (initial) | Co-infected Cell Population (cells) | 0 |
Vs (initial) | STV Concentration (virions/mL) | 1.25 × 105 |
Vd (initial) | DIP Concentration (virions/mL) | 0 |
E (initial) | Concentration of Viruses in a Latent Phase (virions/mL) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, C.S.; Yoon, S. Modeling and Optimization of Continuous Viral Vaccine Production. Processes 2022, 10, 2426. https://doi.org/10.3390/pr10112426
Morris CS, Yoon S. Modeling and Optimization of Continuous Viral Vaccine Production. Processes. 2022; 10(11):2426. https://doi.org/10.3390/pr10112426
Chicago/Turabian StyleMorris, Caitlin S., and Seongkyu Yoon. 2022. "Modeling and Optimization of Continuous Viral Vaccine Production" Processes 10, no. 11: 2426. https://doi.org/10.3390/pr10112426
APA StyleMorris, C. S., & Yoon, S. (2022). Modeling and Optimization of Continuous Viral Vaccine Production. Processes, 10(11), 2426. https://doi.org/10.3390/pr10112426