Numerical Investigation of Flow Characteristics for Gas–Liquid Two–Phase Flow in Coiled Tubing
Abstract
:1. Introduction
2. CFD Modeling for Gas–Liquid Two-Phase Flow
2.1. Governing Equations
2.2. Geometric Configurations and Computational Conditions
3. Results and Discussion
3.1. Sensitivity of Grid Size to Simulation Results
3.2. Model Validation between Simulations and Experiments
3.3. Axial Velocity Distribution
3.4. Velocity Distribution in Cross-Section
3.5. Characteristics of Secondary Flow
3.6. Distribution of Gas–Liquid Phase in Cross-Sections
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eustice, I. Experiments on Stream-Line Motion in Curved Pipes. Proc. R. Soc. Lond. Ser. A 1911, 85, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Eustice, I. Flow of Water in Curved Pipes. Proc. R. Soc. Lond. Ser. A 1910, 84, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Dean, W.R.; Hurst, J.M. Note on the Motion of Fluid in a Curved Pipe. Mathematika 1959, 6, 77–85. [Google Scholar] [CrossRef]
- Berger, S.A.; Talbot, L.; Yao, L.S. Flow in Curved Pipes. Annu. Rev. Fluid Mech. 1983, 15, 461–512. [Google Scholar] [CrossRef]
- Willingham, J.D.; Shah, S.N. Friction Pressures of Newtonian and Non-Newtonian Fluids in Straight and Reeled Coiled Tubing. In Proceedings of the SPE/ICoTA Coiled Tubing Roundtable, Houston, TX, USA, 5–6 April 2000. [Google Scholar] [CrossRef]
- Zhou, Y.; Shah, S.N. New Friction Factor Correlations for Non-Newtonian Fluid Flow in Coiled Tubing. SPE Drill. Complet. 2006, 21, 68–76. [Google Scholar] [CrossRef]
- McCann, R.C.; Isias, C.G. Frictional Pressure Loss during Turbulent Flow in Coiled Tubing. In Proceedings of the SPE Gulf Coast Section/ICoTA North American Coiled Tubing Roundtable, Conroe, TX, USA, 26–28 February 1996. [Google Scholar]
- Boersma, B.J.; Nieuwstadt, F.T.M. Large-Eddy Simulation of Turbulent Flow in a Curved Pipe. J. Fluids Eng.-Trans. ASME 1996, 118, 248–252. [Google Scholar] [CrossRef]
- Zhang, J.K.; Li, G.S.; Huang, Z.W.; Tian, S.C.; Shi, H.Z.; Song, X.Z. Numerical Simulation on Friction Pressure Loss in Helical Coiled Tubing. J. China Univ. Pet. 2012, 36, 115–119. [Google Scholar] [CrossRef]
- Asafa, K.A.; Shah, S.N. Effect of Coiled Tubing Buckling on Horizontal Annular Flow. In Proceedings of the SPE/ICoTA Coiled Tubing & Well Intervention Conference and Exhibition, The Woodlands, TX, USA, 27–28 March 2012. [Google Scholar]
- Guan, F.; Ma, W.; Tu, Y.; Zhou, C.; Feng, D.; Zhou, B. An Experimental Study of Flow Behavior of Coiled Tubing Drilling System. Adv. Mech. Eng. 2014, 1, 935159. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Li, Z.; Chen, H.; Li, S. Foam Fluid Flow Analysis in Helical Coiled Tubing Using CFD. Procedia Eng. 2015, 126, 696–700. [Google Scholar] [CrossRef]
- Pereira, C.E.G.; da Cruz, G.A.; Pereira Filho, L.; Justino, L.R.; Paraiso, E.C.H.; Rocha, J.M.; Calçada, L.A.; Scheid, C.M. Experimental Analysis of Pressure Drop in the Flow of Newtonian Fluid in Coiled Tubing. J. Pet. Sci. Eng. 2019, 179, 565–573. [Google Scholar] [CrossRef]
- Oliveira, B.R.; Leal, B.C.; Pereira Filho, L.; Borges, R.F.d.O.; Paraíso, E.d.C.H.; Magalhães, S.D.C.; Rocha, J.M.; Calçada, L.A.; Scheid, C.M. A Model to Calculate the Pressure Loss of Newtonian and Non-Newtonian Fluids Flow in Coiled Tubing Operations. J. Pet. Sci. Eng. 2021, 204, 10864. [Google Scholar] [CrossRef]
- Martinelli, R.C.; Nelson, D.B. Prediction of Pressure Drop during Forced-Circulation of Boiling Water. Trans. ASME 1948, 70, 695–702. [Google Scholar]
- Lockhart, R.W.; Martinelli, R.C. Proposed Correlation of Data for Isothermal Two-Phase Two Component Flow in Pipes. Chem. Eng. Prog. 1949, 45, 39–45. [Google Scholar]
- Akagawa, K.; Sakaguchi, T.; Ueda, M. Study on a Gas- Liquid Two- Phase Flow in Helically Coiled Tubes. Bull. JSME 1971, 14, 564–571. [Google Scholar] [CrossRef] [Green Version]
- Bi, Q.; Chen, T.; Luo, Y.; Zheng, J. Frictional Pressure Drop of Steam-Water Two-Phase Flow in Helical Coils with Small Helix Diameter of HTR-10. Chin. J. Nucl. Sci. Eng. 1996, 3, 208–213. [Google Scholar] [CrossRef]
- Xin, R.C.; Awwad, A.; Dong, Z.F.; Ebadian, M.A. An Experimental Study of Single-Phase and Two-Phase Flow Pressure Drop in Annular Helicoidal Pipes. Int. J. Heat Fluid Flow 1997, 18, 482–488. [Google Scholar] [CrossRef]
- Santini, L.; Cioncolini, A.; Lombardi, C.; Ricotti, M. Two-Phase Pressure Drops in a Helically Coiled Steam Generator. Int. J. Heat Mass Transf. 2008, 51, 4926–4939. [Google Scholar] [CrossRef]
- Guo, L.; Feng, Z.; Chen, X. An Experimental Investigation of the Frictional Pressure Drop of Steam-Water Two-Phase Flow in Helical Coils. Int. J. Heat Mass Transf. 2001, 44, 2601–2610. [Google Scholar] [CrossRef]
- Colombo, M.; Cammi, A.; Guédon, G.R.; Inzoli, F.; Ricotti, M.E. CFD Study of an Air-Water Flow inside Helically Coiled Pipes. Prog. Nucl. Energy 2015, 85, 462–472. [Google Scholar] [CrossRef] [Green Version]
- Cioncolini, A.; Santini, L. Two-Phase Pressure Drop Prediction in Helically Coiled Steam Generators for Nuclear Power Applications. Int. J. Heat Mass Transf. 2016, 100, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Li, X.; Wu, X. New Friction Factor Equations Developed for Turbulent Flows in Rough Helical Tubes. Int. J. Heat Mass Transf. 2016, 95, 525–534. [Google Scholar] [CrossRef]
- Xiao, Y.; Hu, Z.; Chen, S.; Gu, H. Experimental Study of Two-Phase Frictional Pressure Drop of Steam-Water in Helically Coiled Tubes with Small Coil Diameters at High Pressure. Appl. Therm. Eng. 2018, 132, 18–29. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.; Liu, H.; Zhao, K.; Liu, S. Calculation Method of Gas–Liquid Two-Phase Boiling Heat Transfer in Helically-Coiled Tube Based on Separated Phase Flow Model. Int. J. Heat Mass Transf. 2020, 161, 114381. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.; Li, S.; Chen, Y.; Liu, S.; Xia, C.; Chen, Y. Numerical Simulation Research on Two-Phase Flow Boiling Heat Transfer in Helically Coiled Tube. Nucl. Eng. Des. 2022, 395, 111827. [Google Scholar] [CrossRef]
- Gidaspow, D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Wilcox, D.C. Turbulence Modeling for CFD; DCW Industries: La Canada, CA, USA, 1998. [Google Scholar]
- Zhou, Y.; Shah, S.N. Rheological Properties and Frictional Pressure Loss of Drilling, Completion, and Stimulation Fluids in Coiled Tubing. J. Fluids Eng.-Trans. ASME 2004, 126, 153–161. [Google Scholar] [CrossRef]
- Zhou, Y. Theoretical and Experimental Studies of Power-Law Fluid Flow in Coiled Tubing; University of Oklahoma: Norman, Oklahoma, 2006. [Google Scholar]
- Shah, S.; Zhou, Y.; Bailey, M.; Hernandez, J. Correlations to Predict Frictional Pressure Loss of Hydraulic-Fracturing Slurry in Coiled Tubing. SPE Prod. Oper. 2009, 24, 381–395. [Google Scholar] [CrossRef]
- FLUENT. ANSYS FLUENT User’s Guide; ANSYS, Inc. Release 19.0: Canonsburg, PA, USA, 2018. [Google Scholar]
- Ogugbue, C.C.; Shah, S.N. Laminar and Turbulent Friction Factors for Annular Flow of Drag-Reducing Polymer Solutions in Coiled-Tubing Operations. SPE Drill. Complet. 2011, 26, 506–518. [Google Scholar] [CrossRef]
- Ishigaki, H. Laminar Flow in Rotating Curved Pipes. J. Fluid Mech. 1996, 329, 373–388. [Google Scholar] [CrossRef]
Model | CT Diameter | Coil Diameters | Curvature Ratio |
---|---|---|---|
d (in) | D (in) | d/D | |
M1 | 0.435 | 3.6 | 0.010 |
M2 | 0.435 | 1.8 | 0.019 |
M3 | 0.435 | 1.2 | 0.031 |
M4 | 0.435 | 0.5 | 0.076 |
M5 | 0.810 | 48 | 0.017 |
M6 | 0.810 | 72 | 0.011 |
M7 | 1.188 | 72 | 0.017 |
M8 | 2.063 | 111 | 0.019 |
M9 | 1.532 | 82 | 0.018 |
Model | Avg. Error | RMS |
---|---|---|
M1 | 1.11% | 0.0029 |
M2 | 0.88% | 0.0035 |
M3 | 1.57% | 0.0053 |
M4 | 1.21% | 0.0060 |
M5 | 0.72% | 0.0027 |
M6 | 0.78% | 0.0027 |
M7 | 2.14% | 0.0052 |
M8 | 1.92% | 0.0052 |
M9 | 1.43% | 0.0063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Liu, J.; Zhang, W.; Yi, T. Numerical Investigation of Flow Characteristics for Gas–Liquid Two–Phase Flow in Coiled Tubing. Processes 2022, 10, 2476. https://doi.org/10.3390/pr10122476
Sun S, Liu J, Zhang W, Yi T. Numerical Investigation of Flow Characteristics for Gas–Liquid Two–Phase Flow in Coiled Tubing. Processes. 2022; 10(12):2476. https://doi.org/10.3390/pr10122476
Chicago/Turabian StyleSun, Shihui, Jiahao Liu, Wan Zhang, and Tinglong Yi. 2022. "Numerical Investigation of Flow Characteristics for Gas–Liquid Two–Phase Flow in Coiled Tubing" Processes 10, no. 12: 2476. https://doi.org/10.3390/pr10122476
APA StyleSun, S., Liu, J., Zhang, W., & Yi, T. (2022). Numerical Investigation of Flow Characteristics for Gas–Liquid Two–Phase Flow in Coiled Tubing. Processes, 10(12), 2476. https://doi.org/10.3390/pr10122476