Indicators of Impact Selected Municipal Units on the Air Quality—Case Study from Poland and Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Krakow Agglomeration
2.2. Bacau County
2.3. Statistics
2.4. Characteristics of the Selected Agglomeration
2.4.1. Location—Krakow Agglomeration
2.4.2. Location—Bacau County
2.5. Climate
2.5.1. Krakow Agglomeration
2.5.2. Bacau County
2.6. Communication
2.6.1. Krakow Agglomeration
2.6.2. Bacau County
3. Results and Discussions
3.1. Atmospheric Air Quality—Krakow Agglomeration
3.2. Atmospheric Air Quality—Bacau County
3.3. Atmospheric Air Temperature—Krakow Agglomeration
3.4. Atmospheric Air Temperature—Bacau County
3.5. Number of Vehicles—Krakow Agglomeration
3.6. Number of Vehicles—Bacau County
3.7. Statistical Analysis
4. Discussion of the Results
5. Conclusions
- Results above the normative concentrations of nitrogen oxides and PM10 indicate a problem with maintaining the required air quality parameters with a noticeable decrease in their concentrations, except for benzene, which was caused by COVID-19;
- The highest concentrations of nitrogen oxide of 53.99 µg m−3 were recorded in the winter in the background measuring station, which confirms the advection of pollutants in the area of the studied agglomeration;
- The concentration of nitrogen oxides was most often exceeded 5 times in the winter–spring and autumn–winter periods, with the highest value of 95.95 µg m−3 in the agglomeration;
- To effectively reduce harmful emissions into the air, it is advisable to replace heating installations with low-emission ones to replace heating furnaces and apply new technologies related to the use of renewable energy sources and the development of electromobility.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mayer, H. Air pollution in cities. Atmos. Environ. 1999, 33, 4029–4037. [Google Scholar] [CrossRef]
- WHO Health Risks of Particulate Matter from Long-Range Transboundary Air Pollution; WHO Regional Office for Europe: Copenhagen, Denmark, 2006; Available online: https://apps.who.int/iris/handle/10665/107691 (accessed on 12 February 2022).
- Selmi, W.; Selmi, S.; Teller, J.; Weber, C.; Rivière, E.; Nowak, D.J. Prioritizing the provision of urban ecosystem services in deprived areas, is a question of environmental justice. Ambio 2016, 50, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.C.; Alley, F.A. Air Pollution Control: A Design Approach, 4th ed.; Waveland Press Inc.: Long Grove, IL, USA, 2011. [Google Scholar]
- Cembrzyńska, J.; Krakowiak, E.; Brewczynski, P.Z. Particulate pollution of PM10 and PM2.5 due to strong anthropopressure in Sosnowiec city. Environ. Med. 2012, 15, 31–38. [Google Scholar]
- Vallero, D. Fundamentals of Air Pollution; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Falkowska, L.; Korzeniewski, K. Chemia Atmosfery; Uniwersytetu Gdańskiego: Gdańsk, Poland, 1995. (In Polish) [Google Scholar]
- RPME-Regulation of the Polish Minister of the Environment on the Levels of Certain Substances in the Air, The Notice of the Minister of Climate and Environment of 12 April on the Publication of the Uniform Text of the Regulation of the Minister of the Environment on the Levels of Certain Substances in the Air (Journal of Laws of 2021, Item 845). Available online: http://www.sejm.gov.pl (accessed on 18 March 2022).
- Bai, L.; Wang, J.; Ma, X.; Lu, H. Air pollution forecasts: An overview. Int. J. Environ. Res. Public Health 2018, 15, 780. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Chen, J.; Wang, B.; Tan, S.C.; Lee, C.M.; Yao, X.; Yan, H.; Shi, J. A study of air pollution of city clusters. Atmos. Environ. 2011, 45, 3069–3077. [Google Scholar] [CrossRef]
- BEPA-Bacau Environmental Protection Agency, Report for 2020. Available online: http://apmbc-old.anpm.ro/docfiles/view/168051 (accessed on 17 March 2022).
- National Agency for Environmental Protection. Available online: http://www.anpm.ro/ (accessed on 18 March 2022).
- Law No. 104 of 15 June 2011 on Ambient Air Quality, as Subsequently Amended and Supplemented. Available online: https://legislatie.just.ro/Public/DetaliiDocument/129642 (accessed on 18 March 2022).
- Przydatek, G.; Budzik, G.; Janik, M. Effectiveness of selected issues of used tyre management in Poland. Environ. Sci. Pollut. Res. 2022, 29, 31467–31475. [Google Scholar] [CrossRef]
- Stanisz, A. Przystępny Kurs Statystyki Z Zastosowaniem STATISTICA PL na Przykładach Z Medycyny; Wydawnictwo StatSoft Polska: Kraków, Poland, 2006; pp. 1–343. (In Polish) [Google Scholar]
- Zakład Klimatologii. Available online: http://www.klimat.geo.uj.edu.pl/ (accessed on 12 February 2022). (In Polish).
- Anderson, J.O.; Thundiyil, J.G.; Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 2012, 8, 66–175. [Google Scholar] [CrossRef] [Green Version]
- Program Ochrony Środowiska Dla Miasta Krakowa Na Lata 2020–2030. Available online: https://strategia.krakow.pl/ (accessed on 12 February 2022).
- National Meteorological Administration. Available online: https://www.meteoromania.ro (accessed on 12 February 2022).
- Kumar, P.; Rivas, I.; Singh, A.P.; Ganesh, V.J.; Monirupa, A.; Frey, H.C. Dynamics of coarse and fine particle exposure in transport microenvironments. Clim. Atmos. Sci. 2018, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Houthuijs, D.; Breugelmansa, O.; Hoekb, G.; Vaskövic, É.; Mihálikovád, E.; Pastuszkae, J.S.; Jirikf, V.; Sachelarescug, S.; Lolovah, D.; Meliefsteb, K.; et al. PM10 and PM2.5 concentrations in Central and Eastern Europe: Results from the Cesar study. Atmos. Environ. 2001, 35, 2757–2771. [Google Scholar] [CrossRef]
- Borrego, C.; Martins, H.; Tchepel, O.; Salmim, L.; Monteiro, A.; Miranda, A.I. How urban structure can affect city sustainability from an air quality perspective. Environ. Model. Softw. 2006, 21, 461–467. [Google Scholar] [CrossRef]
- Berman, J.D.; Ebisu, J. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Rozbicka, K. Charakterystyka zanieczyszczenia powietrza atmosferycznego tlenkami azotu na obszarze aglomeracji warszawskiej ze szczególnym uwzględnieniem Ursynowa. Przegląd Naukowy. Inżynieria I Kształtowanie Sr. 2007, 16, 1. (In Polish) [Google Scholar]
- Pietrzak, K.; Pietrzak, O. Environmental effects of electromobility in a sustainable urban public transport. Sustainability 2020, 12, 1052. [Google Scholar] [CrossRef] [Green Version]
- Hosseinibalam, F.; Hezaji, P. Influence of meteorological parameters on air pollution in Isfahan. Int. Conf. Biol. Environ. Chem. 2012, 46, 7–612. [Google Scholar]
- Ranaei, S. Patent-based technology forecasting: Case of electric and hydrogen vehicle. Int. J. Energy Technol. Policy 2016, 12, 20–40. [Google Scholar] [CrossRef]
- Kendall, K.; Kendall, M.; Liang, B.; Liu, Z. Hydrogen vehicles in China: Replacing the Western Model. Int. J. Hydrogen Energy 2017, 42, 30179–30185. [Google Scholar] [CrossRef]
- Ricci, M. Bike sharing: A review of evidence on impacts and processes of implementation and operation. Res. Transp. Bus. Manag. 2015, 15, 28–38. [Google Scholar] [CrossRef]
- Chang, S.; Song, R.; He, S.; Qui, G. Innovative bike-sharing in China: Solving faulty bike-sharing recycling problem. J. Adv. Transp. 2018, 2018, 7075814. [Google Scholar] [CrossRef]
- Kowalski, S.; Opoka, K.; Ciula, J. Analysis of the end-of-life the front suspension beam of a vehicle. Maint. Reliab. 2022, 24, 446–454. [Google Scholar] [CrossRef]
Measuring Point | GPS Coordinates | Station Type | Monitored Parameters | |
---|---|---|---|---|
BC1 | Φ 46.564186850513565, λ 26.910435855646913 | Urban | SO2, NOX, NO, NO2, C6H6, PM10, Pb, Cd, Ni, As | February, March, May, June, August, September, November and December 2020, 6 consecutive days |
BC2 | Φ 46.55492022950175, λ 26.924252748032476 | Industrial | SO2, NOX, NO, NO2, C6H6, PM10 | January–December 2020, continuous monitoring |
Month | Air Temperature * [°C] | Air Temperature ** [°C] |
---|---|---|
January | 1.6 | 4.5 |
February | 4.5 | 5.5 |
March | 5.5 | 10.0 |
April | 10.0 | 12.1 |
May | 12.1 | 18.7 |
June | 18.7 | 19.7 |
July | 19.7 | 20.9 |
August | 20.9 | 15.5 |
September | 15.5 | 10.5 |
October | 10.5 | 5.3 |
November | 5.3 | 1.4 |
December | 1.5 | 10.5 |
Month | Air Temperature [°C] |
---|---|
January | 0.0 |
February | 4.2 |
March | 6.6 |
April | 10.2 |
May | 14.2 |
June | 20.8 |
July | 21.8 |
August | 22.5 |
September | 17.9 |
October | 12.8 |
November | 4.1 |
December | 2.2 |
Var. | Results of Relationship between Variables | ||||
---|---|---|---|---|---|
Unit. | NO_2 | NOX_2 | PM10_2 | Temp_2 | |
NO_2 | µg m−3 | 1.000 | 0.987 | 0.809 | −0.666 |
NOX_2 | µg m−3 | 0.987 | 1.000 | 0.871 | −0.690 |
PM10_2 | µg m−3 | 0.809 | 0.871 | 1.000 | −0.676 |
Temp_2 | °C | −0.666 | −0.690 | −0.676 | 1.000 |
Variable | Unit | Results of Correlation | |||||
---|---|---|---|---|---|---|---|
SO2_2 | NO_2 | NOX_2 | C6H6_2 | PM10_2 | Temp. | ||
SO2_2 | µg m−3 | 1.000 | 0.901 | 0.787 | 0.788 | 0.663 | −0.557 |
NO_2 | µg m−3 | 0.901 | 1.000 | 0.967 | 0.725 | 0.588 | −0.511 |
NOX_2 | µg m−3 | 0.787 | 0.967 | 1.000 | 0.663 | 0.493 | −0.447 |
C6H6_2 | µg m−3 | 0.788 | 0.725 | 0.663 | 1.000 | 0.887 | −0.870 |
PM10_2 | µg m−3 | 0.663 | 0.588 | 0.493 | 0.887 | 1.000 | −0.914 |
Temp. | °C | −0.557 | −0.511 | −0.447 | −0.870 | −0.914 | 1.000 |
Parameter | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Air temperature | YB | XK,B | YK | |||||||||
Amount of vehicules | XK | |||||||||||
PM10 | XBCIK | XBCK | XBIK | |||||||||
Arsenic | XIK | |||||||||||
Benzene | XBCB | XIK | ||||||||||
Cadmium (PM10) | XBCK | |||||||||||
Nickel (PM10) | XBCB | |||||||||||
Lead (PM10) | XBCK | |||||||||||
Nitric oxide | XBCIK | XBCK | XBCK | XBCK | XBCK | |||||||
Nitrogen dioxide | XBCK | |||||||||||
Nitrogen oxides | XBCIK XBCIB | XBCIK XBCB | XBCIK | XBCIK | XBCK | XBCK | XBCK | XBCK | XBCIK | XBCBIK XBCIB | XBCIK XBCIB | XBCIK XBCIB |
Sulphur dioxide | XIB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oana, I.; Grzegorz, P.; Mirela, P.-L.; Claudia, T.; Emilian, M.; Piotr, G. Indicators of Impact Selected Municipal Units on the Air Quality—Case Study from Poland and Romania. Processes 2022, 10, 2485. https://doi.org/10.3390/pr10122485
Oana I, Grzegorz P, Mirela P-L, Claudia T, Emilian M, Piotr G. Indicators of Impact Selected Municipal Units on the Air Quality—Case Study from Poland and Romania. Processes. 2022; 10(12):2485. https://doi.org/10.3390/pr10122485
Chicago/Turabian StyleOana, Irimia, Przydatek Grzegorz, Panainte-Lehadus Mirela, Tomozei Claudia, Mosnegutu Emilian, and Gawron Piotr. 2022. "Indicators of Impact Selected Municipal Units on the Air Quality—Case Study from Poland and Romania" Processes 10, no. 12: 2485. https://doi.org/10.3390/pr10122485
APA StyleOana, I., Grzegorz, P., Mirela, P. -L., Claudia, T., Emilian, M., & Piotr, G. (2022). Indicators of Impact Selected Municipal Units on the Air Quality—Case Study from Poland and Romania. Processes, 10(12), 2485. https://doi.org/10.3390/pr10122485