A Hybrid Euler–Lagrange Model for the Paint Atomization Process of Air Spraying
Abstract
:1. Introduction
2. Mathematical Model
2.1. Motion Model of Large Paint Liquid Micelle
2.2. Paint Particle Motion Model
2.2.1. Droplet Identification and Transformation Mechanism
2.2.2. Lagrangian Particle Transportation Model
2.3. Turbulence Model
3. Numerical Approach
3.1. Nozzle Geometry Model and Computational Domain
3.2. Initial Conditions and Solution Algorithms
4. Results and Discussion
4.1. Mesh Independence
4.2. Model Credibility Analysis
4.2.1. Spray Film-Forming Experiment
4.2.2. Comparison of Paint Atomization Shape
4.2.3. Paint Atomization Process
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.J.; Zi, B.; Wang, Z.Y.; Wei, Y.; Lei, Z. Research Progress and Trend of Key Technology of Intelligent Spraying Robot. J. Mech. Eng. 2022, 58, 53–74. [Google Scholar]
- Ning, Y.; Meng, M. Analysis and Prospect of Spraying Robot Path Planning Method. Sci. Technol. Eng. 2019, 19, 19–27. [Google Scholar]
- Guan, L.W.; Chen, L. Trajectory Planning Method Based on Transitional Segment Optimization of Spray Painting Robot on Complex-free Surface. Ind. Robot 2019, 46, 31–43. [Google Scholar] [CrossRef]
- Zhang, S.Z.; Mao, W.; Zhen, J.B. Research Progress of Coating Thickness Distribution Model by Electrostatic Spraying. Surf. Tech. 2019, 48, 291–297. [Google Scholar]
- Daniel, G.; Stefan, J.; Raad, S.; Sandgren, N.; Edelvik, F.; Carlson, J.S.; Lennartson, B. Robot Spray Painting Trajectory Optimization. In Proceedings of the 2020 IEEE 16th International Conference on Automation Science and Engineering, Hong Kong, China, 20–21 August 2020. [Google Scholar]
- Chen, Y.; Chen, W.Z.; Li, B.; Zhang, G.; Zhang, W. Paint Thickness Simulation for Painting Robot Trajectory Planning: A Review. Ind. Robot Int. J. 2017, 44, 629–638. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Wang, S.; Han, Z.; Lu, M.; Chen, S. Simulation of a Painting Arc Connecting Surface by Moving the Nozzle Based on a Sliding Mesh Model. Coatings 2022, 12, 1603. [Google Scholar] [CrossRef]
- Chen, S.M.; Chen, W.Z.; Chen, Y.; Jiang, J.; Wu, Z.; Zhou, S. Research on Film-Forming Characteristics and Mechanism of Painting V-Shaped Surfaces. Coatings 2022, 12, 658. [Google Scholar] [CrossRef]
- Chen, W.Z.; Chen, Y.; Zhang, W.M.; He, S.; Li, B.; Jiang, J. Paint Thickness Simulation for Robotic Painting of Curved Surfaces Based on Euler-Euler Approach. J. Braz. Soc. Mech. Sci. 2019, 41, 1–9. [Google Scholar] [CrossRef]
- Ye, Q.Y.; Domnick, J. Analysis of Droplet Impingement of Different Atomizers used in Spray Coating Processes. J. Coat. Technol. Res. 2017, 14, 467–476. [Google Scholar] [CrossRef]
- Ye, Q.Y.; Pulli, K. Numerical and Experimental Investigation on the Spray Coating Process using a Pneumatic Atomizer: Influences of Operating Conditions and Target Geometries. Coatings 2017, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.N.; Xie, X.P.; Lu, X.H. Design of a Double-Nozzle Air Spray Gun and Numerical Research in the Interference Spray Flow Field. Coatings 2020, 10, 475. [Google Scholar] [CrossRef]
- Xie, X.P.; Wang, Y.N. Research on Distribution Properties of Coating Film Thickness from Air Spraying Gun-Based on Numerical Simulation. Coatings 2019, 9, 721. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.B.; Zhou, L.X.; Lei, F.P. Overview on Numerical Simulations of Primary Atomization. J. Rocket Propul. 2014, 40, 10–17. [Google Scholar]
- Maziar, S.; Mahmoudzadeh, S. Numerical Investigation of Spray Characteristics of an Air-Blast Atomizer with Dynamic Mesh. Aerosp. Sci. Technol. 2017, 70, 351–358. [Google Scholar]
- Beji, T.; Zadeh, S.E.; Maragkos, G.; Merci, B. Influence of the Particle Injection Rate, Droplet Size Distribution and Volume Flux Angular Distribution on the Results and Computational Time of Water Spray CFD Simulations. Fire Safety J. 2017, 91, 586–595. [Google Scholar] [CrossRef]
- Sabty-Daily, R.A.; Harris, P.A.; Hinds, W.C.; Froines, J.R. Size Distribution and Speciation of Chromium in Paint Spray Aerosol at an Aerospace Facility. Ann. Occup. Hyg. 2005, 49, 47–59. [Google Scholar]
- Pourmousa, A.; Mostaghimi, J.; Abedini, A.; Chandra, S. Particle Size Distribution in a Wire-Arc Spraying System. J. Therm. Spray Technol. 2005, 14, 502–510. [Google Scholar] [CrossRef]
- Pendar, M.R.; Pascoa, J.C. Atomization and Spray Characteristics around an ERBS Using Various Operational Models and Conditions: Numerical Investigation. Int. J. Heat. Mass. Transf. 2020, 161, 120243. [Google Scholar] [CrossRef]
- Li, W.T.; Qian, L.J.; Song, S.B.; Zhong, X. Numerical Study on the Influence of Shaping Air Holes on Atomization Performance in Pneumatic Atomizers. Coatings 2019, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Andersson, B.; Jakobsson, S.; Mark, A.; Edelvik, F.; Davidson, L.; Carlson, J.S. A Modified TAB Model for Simulation of Atomization in Rotary Bell Spray Painting. J. Mech. Eng. Autom. 2013, 3, 54–61. [Google Scholar]
- Fogliati, M.; Fontana, D.; Garbero, M.; Vanni, M.; Baldi, G.; Donde, R. CFD Simulation of Paint Deposition in an Air Spray Process. J. Coat. Technol. Res. 2006, 3, 117–125. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Li, Y.K.; Huang, B.; Gao, D. Numerical Investigation on the Influence of Surface Tension and Viscous Force on the Bubble Dynamics with a CLSVOF Method. J. Mech. Sci. Technol. 2016, 30, 2547–2556. [Google Scholar] [CrossRef]
- Kumar, S.N.; Premachandran, B. A Coupled Level Set and Volume of Fluid Method on Unstructured Grids for the Direct Numerical Simulations of Two-phase Flows including Phase Change. Int. J. Heat. Mass. Tran. 2018, 122, 182–203. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, S.; Chen, W.; Hu, J.; Jiang, J. An Atomization Model of Air Spraying Using the Volume-of-Fluid Method and Large Eddy Simulation. Coatings 2021, 11, 1400. [Google Scholar] [CrossRef]
- Chen, X.D.; Yang, V. Recent advances in Physical Understanding and Quantitative Prediction of Impinging-jet Dynamics and Atomization. Chin. J. Aeronaut. 2019, 32, 45–57. [Google Scholar] [CrossRef]
- Li, X.Y.; Soteriou, M.C. Prediction of High Density-Ratio Liquid Jet Atomization in Crossflow Using High Fidelity Simulations on HPC. In Proceedings of the 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012. [Google Scholar]
- Zuzio, D.; Estivalèzes, J.L.; DiPierro, B. An Improved Multi-Scale Eulerian—Lagrangian Method for Simulation of Atomization Process. Comput. Fluids 2018, 176, 285–301. [Google Scholar] [CrossRef] [Green Version]
- Brackbill, J.; Kothe, D.B.; Zemach, C. A continuum method for modeling surface tension. J. Comput. Phys. 1992, 100, 335–354. [Google Scholar] [CrossRef]
- Herrmann, M. A Parallel Eulerian Interface Tracking/Lagrangian Point Particle Multi-Scale Coupling Procedure. J. Comput. Phys. 2010, 229, 745–759. [Google Scholar] [CrossRef]
- Lei, Z.; Jun, X.; Shinjo, J.J.; Cairns, A.; Cruff, L.; Blaxill, H. Development of a Hybrid Multi-Scale Simulation Approach for Spray Processes. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 2015, 230. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.H.; Liu, W.B.; Liu, D.Q. Simulation of Liquid Atomization in Cyclone Atomizer Based on VOF-DPM Coupling Model. In Proceedings of the 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM 2019), Shanghai University, Shanghai, China, 22–24 November 2019. [Google Scholar]
- Morsi, S.A.; Alexander, A.J. An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mech. 1972, 55, 193–208. [Google Scholar] [CrossRef]
- Yang, L.N.; Guo, Z.L.; Cai, P.; Wang, B. Study of the Magnitude Analysis of Coriolis Force in Hydrocyclone. Fluid Mach. 2015, 43, 21–27. [Google Scholar]
- Zhao, F.; Zhang, Y.L.; Zhu, R.; Wang, H. Turbulence Model in Supersonic Jet Flow Field. J. Univ. Sci. Technol. B. 2014, 36, 366–372. [Google Scholar]
- Christophe, D. On the experimental investigation on primary atomization of liquid streams. Exp. Fluids 2008, 45, 371–422. [Google Scholar]
Items | Size (mm) | |
---|---|---|
D1 | Diameter of the paint inlet | 1.3 |
D2 | Inner diameter of the central atomizing air inlet | 2 |
D3 | Outer diameter of the central atomizing air inlet | 3 |
D4 | Diameter of the auxiliary atomizing air inlet 1 | 1 |
D5 | Diameter of the auxiliary atomizing air inlet 2 | 0.5 |
D6 | Diameter of the sector atomizing air inlet | 1 |
D7 | Diameter of the paint inlet height | 0.7 |
θ1 | Nozzle flare angle | 50 |
Phase | Physical Parameters | Inlet | Type | Turbulence Intensity | Hydraulic Diameter (mm) |
---|---|---|---|---|---|
Primary phase air | Density: 1.205 kg/m3 Absolute viscosity: 1.81 × 10−5 Pa/s Surface tension: 7.32 × 10−2 N/m | Central atomizing air inlet | Pressure inlet 2.6 atm | 4.3343 | 1 |
Auxiliary atomizing air inlet 1 | 4.3343 | 1 | |||
Auxiliary atomizing air inlet 2 | 4.7266 | 0.5 | |||
Shaping atomizing air inlet | 4.3343 | 1 | |||
Second phase white primer | Density: 1200 kg/m3 Absolute viscosity: 9.69 × 10−2 Pa/s Surface tension: 2.87 × 10−2 N/m | Paint inlet | Mass flow rate inlet 0.0066 kg/s | — | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Chen, Y.; Wu, Z.; Jiang, J.; Li, J.; Hua, W. A Hybrid Euler–Lagrange Model for the Paint Atomization Process of Air Spraying. Processes 2022, 10, 2513. https://doi.org/10.3390/pr10122513
Chen S, Chen Y, Wu Z, Jiang J, Li J, Hua W. A Hybrid Euler–Lagrange Model for the Paint Atomization Process of Air Spraying. Processes. 2022; 10(12):2513. https://doi.org/10.3390/pr10122513
Chicago/Turabian StyleChen, Shiming, Yan Chen, Zhaojie Wu, Junze Jiang, Jiang Li, and Weixing Hua. 2022. "A Hybrid Euler–Lagrange Model for the Paint Atomization Process of Air Spraying" Processes 10, no. 12: 2513. https://doi.org/10.3390/pr10122513
APA StyleChen, S., Chen, Y., Wu, Z., Jiang, J., Li, J., & Hua, W. (2022). A Hybrid Euler–Lagrange Model for the Paint Atomization Process of Air Spraying. Processes, 10(12), 2513. https://doi.org/10.3390/pr10122513