Technological Assessment on Steam Reforming Process of Crude Glycerol to Produce Hydrogen in an Integrated Waste Cooking-Oil-Based Biodiesel Production Scenario
Abstract
:1. Introduction
2. Crude Glycerol
3. Crude Glycerol to Hydrogen
4. Process Simulation
4.1. Standalone Biodiesel Production Process
4.2. Crude Glycerol Valorization Process and the Process Integration
5. Result and Discussion
Analysis of Gibbs Reactor for Steam Reforming, B22
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- Gautam, P.; Kumar, S.; Lokhandwala, S. Energy-Aware Intelligence in Megacities, in Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 211–238. [Google Scholar]
- Rogers, J. 6 Clean Energy Milestones to Watch for; Union of Concerned Scientists: Cambridge, MA, USA, 2019; pp. 211–238. [Google Scholar]
- Aboelazayem, O.; Gadalla, M.; Saha, B. Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis. Energy 2018, 161, 299–307. [Google Scholar] [CrossRef]
- Van Gerpen, J. Basics of Diesel Engines and Diesel Fuels. In The Biodiesel Handbook; Elsevier: Amsterdam, The Netherlands, 2010; pp. 21–30. [Google Scholar]
- Thompson, J.C.; He, B.B. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl. Eng. Agric. 2006, 22, 261–265. [Google Scholar] [CrossRef]
- Pitt, F.D.; Domingos, A.M.; Barros, A.C. Purification of residual glycerol recovered from biodiesel production. S. Afr. J. Chem. Eng. 2019, 29, 42–51. [Google Scholar] [CrossRef]
- Rahim, S.A.N.M.; Lee, C.S.; Abnisa, F.; Aroua, M.K.; Daud, W.A.W.; Cognet, P.; Pérès, Y. A review of recent developments on kinetics parameters for glycerol electrochemical conversion—A by-product of biodiesel. Sci. Total Environ. 2020, 705, 135137. [Google Scholar] [CrossRef] [PubMed]
- Okoye, P.U.; Longoria, A.; Sebastian, P.; Wang, S.; Li, S.; Hameed, B. A review on recent trends in reactor systems and azeotrope separation strategies for catalytic conversion of biodiesel-derived glycerol. Sci. Total Environ. 2020, 719, 134595. [Google Scholar] [CrossRef]
- Rahman, S.; Xu, C.; Qin, W. Biotransformation of biodiesel-derived crude glycerol using newly isolated bacteria from environmental consortia. Process. Biochem. 2017, 63, 177–184. [Google Scholar] [CrossRef]
- Binhayeeding, N.; Klomklao, S.; Sangkharak, K. Utilization of Waste Glycerol from Biodiesel Process as a Substrate for Mono-, Di-, and Triacylglycerol Production. Energy Procedia 2017, 138, 895–900. [Google Scholar] [CrossRef]
- Agarwal, A.; Das, L.M. Biodiesel Development and Characterization for Use as a Fuel in Compression Ignition Engines. J. Eng. Gas Turbines Power 2001, 123, 440–447. [Google Scholar] [CrossRef]
- Monyem, A.; Van Gerpen, J.H. The effect of biodiesel oxidation on engine performance and emissions. Biomass-Bioenergy 2001, 20, 317–325. [Google Scholar] [CrossRef]
- Saravanan, A.; Murugan, M.; Reddy, M.S.; Parida, S. Performance and emission characteristics of variable compression ratio CI engine fueled with dual biodiesel blends of Rapeseed and Mahua. Fuel 2020, 263, 116751. [Google Scholar] [CrossRef]
- Pereira, F.M.; Velásquez, J.A.; Riechi, J.L.; Teixeira, J.; Ronconi, L.; Riolfi, S.; Karas, L.; Abreu, R.A.; Travain, J.C. Impact of pure biodiesel fuel on the service life of engine-lubricant: A case study. Fuel 2020, 261, 116418. [Google Scholar] [CrossRef]
- Aransiola, E.; Ojumu, T.; Oyekola, O.; Madzimbamuto, T.; Ikhu-Omoregbe, D. A review of current technology for biodiesel production: State of the art. Biomass-Bioenergy 2014, 61, 276–297. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Tabatabaei, M.; Hosseinpour, S. On the exergoeconomic and exergoenvironmental evaluation and optimization of biodiesel synthesis from waste cooking oil (WCO) using a low power, high frequency ultrasonic reactor. Energy Convers. Manag. 2018, 164, 385–398. [Google Scholar] [CrossRef]
- Yusuf, N.; Kamarudin, S.; Yaakub, Z. Overview on the current trends in biodiesel production. Energy Convers. Manag. 2011, 52, 2741–2751. [Google Scholar] [CrossRef]
- Marchetti, J.; Miguel, V.; Errazu, A. Techno-economic study of different alternatives for biodiesel production. Fuel Process. Technol. 2008, 89, 740–748. [Google Scholar] [CrossRef]
- Mohadesi, M.; Aghel, B.; Gouran, A.; Razmehgir, M.H. Transesterification of waste cooking oil using Clay/CaO as a solid base catalyst. Energy 2022, 242, 122536. [Google Scholar] [CrossRef]
- Aghel, B.; Mohadesi, M.; Razmehgir, M.H.; Gouran, A. Biodiesel production from waste cooking oil in a micro-sized reactor in the presence of cow bone-based KOH catalyst. Biomass-Convers. Biorefinery 2022, 12, 1–15. [Google Scholar] [CrossRef]
- Lai, W.-F.; Wong, W.-T. Use of graphene-based materials as carriers of bioactive agents. Asian J. Pharm. Sci. 2021, 16, 577–588. [Google Scholar] [CrossRef]
- Aghel, B.; Gouran, A.; Shahsavari, P. Optimizing the Production of Biodiesel from Waste Cooking Oil Utilizing Industrial Waste-Derived MgO/CaO Catalysts. Chem. Eng. Technol. 2022, 45, 348–354. [Google Scholar] [CrossRef]
- Mota, C.J.; da Silva, C.X.; Goncalves, V.L. Glycerochemistry: New products and processes from glycerin of biodiesel production. Química Nova 2009, 32, 639–648. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, A.; Souza, D.H.; Fernandes, M.; Rodrigues, E.B.; Trevisan, V.; Skoronski, E. Application of glycerol as carbon source for continuous drinking water denitrification using microorganism from natural biomass. J. Environ. Manag. 2020, 256, 109964. [Google Scholar] [CrossRef] [PubMed]
- Ajorpaz, N.M.; Rahemi, Z.; Aghajani, M.; Hashemi, S.H. Effects of glycerin oil and lavender oil massages on hemodialysis patients’ restless legs syndrome. J. Bodyw. Mov. Ther. 2020, 24, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Abdul Raman, A.A.; Tan, H.W.; Buthiyappan, A. Two-Step Purification of Glycerol as a Value Added by Product From the Biodiesel Production Process. Front. Chem. 2019, 7, 774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayoub, M.; Abdullah, A.Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 2012, 16, 2671–2686. [Google Scholar] [CrossRef]
- Raza, M.; Inayat, A.; Abu-Jdayil, B. Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review. Sustainability 2021, 13, 12813. [Google Scholar] [CrossRef]
- Nomanbhay, S.; Hussein, R.; Ong, M.Y. Sustainability of biodiesel production in Malaysia by production of bio-oil from crude glycerol using microwave pyrolysis: A review. Green Chem. Lett. Rev. 2018, 11, 135–157. [Google Scholar] [CrossRef]
- Okoye, P.U.; Hameed, B.H. Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renew. Sustain. Energy Rev. 2016, 53, 558–574. [Google Scholar] [CrossRef]
- Manfro, R.L.; da Costa, A.F.; Ribeiro, N.F.; Souza, M.M. Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2. Fuel Process. Technol. 2011, 92, 330–335. [Google Scholar] [CrossRef]
- Hatanaka, R.R.; De Oliveira, J.E. Glycerol as a Raw Material for Hydrogen Production. In Biofuels—Status and Perspective; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Balat, M. Production of Hydrogen via Biological Processes. Energy Sources Part A Recover. Util. Environ. Eff. 2009, 31, 1802–1812. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Z.; Gong, X.; Guo, Z. The intensification technologies to water electrolysis for hydrogen production—A review. Renew. Sustain. Energy Rev. 2014, 29, 573–588. [Google Scholar] [CrossRef]
- Roslan, N.A.; Abidin, S.Z.; Ideris, A.; Vo, D.-V.N. A review on glycerol reforming processes over Ni-based catalyst for hydrogen and syngas productions. Int. J. Hydrogen Energy 2020, 45, 18466–18489. [Google Scholar] [CrossRef]
- Avasthi, K.S.; Reddy, R.N.; Patel, S. Challenges in the Production of Hydrogen from Glycerol—A Biodiesel Byproduct Via Steam Reforming Process. Procedia Eng. 2013, 51, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.; Fernando, S.D.; Haryanto, A. Hydrogen production from glycerin by steam reforming over nickel catalysts. Renew. Energy 2008, 33, 1097–1100. [Google Scholar] [CrossRef]
- Lin, Y.-C. Catalytic valorization of glycerol to hydrogen and syngas. Int. J. Hydrogen Energy 2013, 38, 2678–2700. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Li, M.; Li, S.; Wang, S.; Ma, X. Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. Int. J. Hydrogen Energy 2009, 34, 5683–5690. [Google Scholar] [CrossRef]
- Lin, K.-H.; Chang, A.C.-C.; Lin, W.-H.; Chen, S.-H.; Chang, C.-Y.; Chang, H.-F. Autothermal steam reforming of glycerol for hydrogen production over packed-bed and Pd/Ag alloy membrane reactors. Int. J. Hydrogen Energy 2013, 38, 12946–12952. [Google Scholar] [CrossRef]
- Ghani, A.A.; Torabi, F.; Ibrahim, H. Autothermal reforming process for efficient hydrogen production from crude glycerol using nickel supported catalyst: Parametric and statistical analyses. Energy 2018, 144, 129–145. [Google Scholar] [CrossRef]
- Subramanian, N.D.; Callison, J.; Catlow, C.R.A.; Wells, P.P.; Dimitratos, N. Optimised hydrogen production by aqueous phase reforming of glycerol on Pt/Al2O3. Int. J. Hydrogen Energy 2016, 41, 18441–18450. [Google Scholar] [CrossRef]
- García, L.; Valiente, A.; Oliva, M.; Ruiz, J.; Arauzo, J. Influence of operating variables on the aqueous-phase reforming of glycerol over a Ni/Al coprecipitated catalyst. Int. J. Hydrogen Energy 2018, 43, 20392–20407. [Google Scholar] [CrossRef]
- Ortiz, F.G.; Ollero, P.; Serrera, A.; Sanz, A. Thermodynamic study of the supercritical water reforming of glycerol. Int. J. Hydrogen Energy 2011, 36, 8994–9013. [Google Scholar] [CrossRef]
- Ziyai, M.R.; Mehrpooya, M.; Aghbashlo, M.; Omid, M.; Alsagri, A.S.; Tabatabaei, M. Techno-economic comparison of three biodiesel production scenarios enhanced by glycerol supercritical water reforming process. Int. J. Hydrogen Energy 2019, 44, 17845–17862. [Google Scholar] [CrossRef]
- Salehi, A.; Karbassi, A.; Ghobadian, B.; Ghasemi, A.; Doustgani, A. Simulation process of biodiesel production plant. Environ. Prog. Sustain. Energy 2019, 38, e13264. [Google Scholar] [CrossRef]
- Lu, H.; Liu, Y.; Zhou, H.; Yang, Y.; Chen, M.; Liang, B. Production of biodiesel from Jatropha curcas L. oil. Comput. Chem. Eng. 2009, 33, 1091–1096. [Google Scholar] [CrossRef]
- Serri, N.A.; Kamarudin, A.H.; Rahaman, A. Preliminary studies for production of fatty acids from hydrolysis of cooking palm oil using C. rugosa lipase. J. Phys. Sci. 2008, 19, 79–88. [Google Scholar]
- Ho, P.; Chuang, G.; Li, H. Computational multiple steady states for enzymic production of l-DOPA in an isothermal CSTR. Process. Biochem. 2005, 40, 469–478. [Google Scholar] [CrossRef]
- Hernández-Montelongo, R.; García-Sandoval, J.P.; González-Álvarez, A.; Dochain, D.; Aguilar-Garnica, E. Biodiesel production in a continuous packed bed reactor with recycle: A modeling approach for an esterification system. Renew. Energy 2018, 116, 857–865. [Google Scholar] [CrossRef]
- Janbarari, S.R.; Behrooz, H.A. Optimal and robust synthesis of the biodiesel production process using waste cooking oil from different feedstocks. Energy 2020, 198, 117251. [Google Scholar] [CrossRef]
- Papalas, T.; Antzaras, A.N.; Lemonidou, A.A. Intensified steam methane reforming coupled with Ca-Ni looping in a dual fluidized bed reactor system: A conceptual design. Chem. Eng. J. 2020, 382, 122993. [Google Scholar] [CrossRef]
- Cormos, A.-M.; Cormos, C.-C. Techno-economic and environmental performances of glycerol reforming for hydrogen and power production with low carbon dioxide emissions. Int. J. Hydrogen Energy 2017, 42, 7798–7810. [Google Scholar] [CrossRef]
- Mohadesi, M.; Moradi, G.; Ghanbari, M.; Moradi, M.J. Investigating the effect of n-hexane as solvent on waste cooking oil conversion to biodiesel using CaO on a new support as catalyst. Measurement 2019, 135, 606–612. [Google Scholar] [CrossRef]
- Sakdasri, W.; Sawangkeaw, R.; Ngamprasertsith, S. Techno-economic analysis of biodiesel production from palm oil with supercritical methanol at a low molar ratio. Energy 2018, 152, 144–153. [Google Scholar] [CrossRef]
- Czernik, S.; French, R.; Feik, A.C.; Chornet, E. Hydrogen by Catalytic Steam Reforming of Liquid Byproducts from Biomass Thermoconversion Processes. Ind. Eng. Chem. Res. 2002, 41, 4209–4215. [Google Scholar] [CrossRef]
Process Pathway | Final Product |
---|---|
Purification | Glycerol |
Chlorination | Dichloro-propanol and epichlorohydrin |
Steam Reforming | Hydrogen and syngas |
Dehydration | Acrolein, acrylic acid, and acetol |
Hydrogenolysis | Propanediol, ethylene glycol, propanol |
Oxidation | Glycolic acid, formic acid, and other acids |
Esterification | Glycerol, tertiary butyl ether, and other ethers. |
Transesterificatin | Glycerol Carbonate and Methanol |
Stream | 1 | 2 | 3 | 7 | 18 | 27 | 30 | 34 | |||||
Temperature (°C) | 25 | 25 | 25 | 219.3189 | 25 | 732 | 25 | 25 | |||||
Pressure (bar) | 1.01325 | 1.01325 | 1.01325 | 1.01325 | 1.01325 | 1.01325 | 1.01325 | 1.01325 | |||||
Component: | Kmol/h | Kmol/h | Kmol/h | Kmol/h | Mole Fraction | Kmol/h | Mole Fraction | Kmol/h | Mole Fraction | Kmol/h | Mole Fraction | Kmol/h | Mole Fraction |
Water | 138 | 0 | 0 | 5.52 | 0.090909 | 8.024471 | 0.060308 | 5.42 × 107 | 1.64 × 109 | 12.08372 | 0.030595 | 0 | 0 |
Triolein | 0 | 23 | 0 | 1.47 × 109 | 2.43 × 1011 | 0.92 | 0.006914 | 0 | 0 | 0 | 0 | 0 | 0 |
Methanol | 0 | 0 | 190 | 0 | 0 | 1.903104 | 0.014303 | 5.55 × 1013 | 1.68 × 1015 | 5.14 × 107 | 5.51 × 1010 | 0 | 0 |
Oleic-acid | 0 | 0 | 0 | 4.37255 | 0.072012 | 5.311773 | 0.039921 | 4.32 × 1010 | 1.30 × 1012 | 0 | 0 | 0 | 0 |
Glycerol | 0 | 0 | 0 | 44.15232 | 0.727146 | 0.007627 | 5.73 × 105 | 0 | 0 | 1.72 × 1027 | 1.65 × 1030 | 0 | 0 |
Methyl-Oleate | 0 | 0 | 0 | 0 | 0 | 56.48453 | 0.424513 | 1.87 × 1020 | 5.86 × 1023 | 0 | 0 | 0 | 0 |
Hydrogen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000557 | 1.68 × 106 | 531.1917 | 0.602088 | 488.7636 | 1 |
Methane | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 181.6321 | 0.548213 | 2.994619 | 0.001438 | 0 | 0 |
Carbon-monoxide | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 139.2939 | 0.420424 | 322.6526 | 0.352064 | 0 | 0 |
Carbon-dioxide | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.38919 | 0.031361 | 5.668012 | 0.013815 | 0 | 0 |
Oxygen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.58 × 1017 | 2.04 × 1019 | 0 | 0 |
Trilinolein | 0 | 23 | 0 | 1.63 × 109 | 2.68 × 1011 | 0.92 | 0.006914 | 0 | 0 | 0 | 0 | 0 | 0 |
Linoleic-acid | 0 | 0 | 0 | 6.67513 | 0.109933 | 7.587828 | 0.057027 | 2.45 × 1012 | 7.38 × 1015 | 0 | 0 | 0 | 0 |
Methyl-linoleate | 0 | 0 | 0 | 0 | 0 | 51.89777 | 0.390041 | 9.73 × 1020 | 2.93 × 1022 | 0 | 0 | 0 | 0 |
Total | 138 | 46 | 190 | 60.72 | 1 | 133.0571 | 1 | 331.3158 | 1 | 874.5907 | 1 | 488.7636 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naranje, V.; Swarnalatha, R.; Batra, O.; Salunkhe, S. Technological Assessment on Steam Reforming Process of Crude Glycerol to Produce Hydrogen in an Integrated Waste Cooking-Oil-Based Biodiesel Production Scenario. Processes 2022, 10, 2670. https://doi.org/10.3390/pr10122670
Naranje V, Swarnalatha R, Batra O, Salunkhe S. Technological Assessment on Steam Reforming Process of Crude Glycerol to Produce Hydrogen in an Integrated Waste Cooking-Oil-Based Biodiesel Production Scenario. Processes. 2022; 10(12):2670. https://doi.org/10.3390/pr10122670
Chicago/Turabian StyleNaranje, Vishal, R. Swarnalatha, Ojas Batra, and Sachin Salunkhe. 2022. "Technological Assessment on Steam Reforming Process of Crude Glycerol to Produce Hydrogen in an Integrated Waste Cooking-Oil-Based Biodiesel Production Scenario" Processes 10, no. 12: 2670. https://doi.org/10.3390/pr10122670
APA StyleNaranje, V., Swarnalatha, R., Batra, O., & Salunkhe, S. (2022). Technological Assessment on Steam Reforming Process of Crude Glycerol to Produce Hydrogen in an Integrated Waste Cooking-Oil-Based Biodiesel Production Scenario. Processes, 10(12), 2670. https://doi.org/10.3390/pr10122670