Solid-State Fermentation from Organic Wastes: A New Generation of Bioproducts
Abstract
:1. Introduction
2. Organic Waste as Substrate for SSF
3. Emerging Bioproducts from SSF
3.1. Biosurfactants
3.2. Biopesticides
3.3. Antibiotics
3.4. Other Products
- (a)
- Aromas and flavors: this field is especially interesting, as typically synthetic products or natural products (after a costly extraction) are being used in food and other industries. Recently, some works have been published on the synthesis of molecules with aroma properties. This is the case of 2-phenylethanol, widely used in industry due to its rose-like odor and antibacterial properties, which has been produced via SSF using several agro-industrial wastes (mainly bagasses and molasses) inoculated by Pichia kudriavzevii and Kluyveromyces marxianus [68]. This latter strain and its related SSF process for aroma production has been scaled up to pilot scale using different operation strategies (fed-batch, static-batch, and intermittent mixing) with different productivities, which makes it especially interesting [32]. Other similar products have been focused on the production of fruit-like odor compounds constituted by a mixture of volatile esters [17].
- (b)
- Bioplastics: this field has been traditionally related to wastewater research, especially in the case of PHA (polyhydroxyalkanoates) and PHB (polyhydroxybutyrate), which are synthetized from organic components of wastewater as volatile fatty acids generated in the first stage of anaerobic digestion [69,70]. In the case of SSF, several recent references report how to produce these novel materials by SSF, although this is again an emerging technology. For instance, Llimós et al. [18] used lignocellulosic-derived residues to produce lignocellulolytic enzymes from fungal strains through SSF to hydrolyze the same residue to be used for obtaining sugar-rich hydrolysates that serve as an alternative carbon source for PHA production. The same authors provide some interesting issues to consider when scaling up the SSF process using not-isolated and near-adiabatic bioreactors [71]. Other authors have proposed alternative ways of using agrifood by-products in the SSF process, e.g., using dairy processing waste [72] and other materials [73].
- (c)
- Antioxidants: this is a property of certain chemicals that is of high value for the food and cosmetics industry, among others. There are different compounds with antioxidant properties, but the most typical ones biologically produced are the family of phenolic compounds [74]. In the case of SSF, there are several publications showing the suitability of certain wastes as a substrate to produce antioxidant phenolic compounds, with waste from olive oil production the most referred [75,76]. Other agricultural wastes, such as fruits- and cereals-derived waste have also been reported in the production of phenolic compounds by SSF [77,78]. The main problem of these publications is that they were normally focused on the characterization and properties of the product, whereas SSF is performed with a few grams in lab scale-controlled conditions, which again hampers its commercial development [79].
- (d)
4. SSF Main Challenges
4.1. Mass and Heat Transfer
4.2. Bioproducts Recovery and Downstream
Bioproduct | Extraction Method | Details | Reference | |
---|---|---|---|---|
Biosurfactants | Sophorolipids | Organic solvent extraction | Ethyl Acetate | [100] |
Rhamnolipids | Water extraction | n-Hexane | [101] | |
Biosurfactants | Direct use of fermented solid | Also produced lipases | [102] | |
Sophorolipids | Organic solvent extraction | Ethyl Acetate | [46] | |
Biopesticides | Bacillus thuringiensis | Enhanced compost | [62] | |
Trichoderma Brev | Enhanced soil | [103] | ||
Trichoderma harzianum | - | Conidia were produced, could be used directly as pesticide | [58] | |
Beauveria bassiana | - | Conidia were produced, could be used directly as pesticide | [58] | |
Trichoderma asperellum | - | Conidia were produced, could be used directly as pesticide | [10] | |
Lysinibacillus sphaericus | Water extraction | [104] | ||
Bacillus thuringiensis israelensis | Water extraction | [104] | ||
Bioplastics | Polyhydroxybutyrate | Organic solvent extraction | Multi solvent | [92] |
Polyhydroxybutyrate | Organic solvent extraction | Multi solvent | [105] | |
Polyhydroxyalkanoates | Organic solvent extraction | [71] | ||
Aroma | 2-Phenylethanol | Water extraction | Filtration | [39] |
2-phenethyl acetate | Organic solvent extraction | Methanol | [39] | |
Coconut aroma | Water extraction | Dichloromethane | [106] | |
Esters | Organic solvent extraction | Dichloromethane | [107] | |
ε-Pinene | Organic solvent extraction | Co-enrichment of spent solid as animal feed | [20] | |
Biovanillin | Water extraction | 2-Thiobarbituric acid | [31] | |
Aroma compounds | Supercritical fluid extraction | [108] | ||
Antioxidants | β-Carotene | Organic solvent extraction | Petroleum ether | [109] |
Antioxidants | Microwave assisted | Water or ethanol | [28] | |
Phenolic compounds | Supercritical fluid extraction | Ethanol and water as cosolvents | [110] | |
Phenolic compounds | Supercritical fluid extraction | [110] | ||
Other bioproducts | Cordycepin | Solvent extraction | Ethanol, Cellulase assisted | [111] |
Palmitate | Organic solvent extraction | Co-enrichment of spent solid as animal feed | [19] | |
Red pigment | Organic solvent extraction | Ethanol | [112] | |
Gallic acid | Water | [113] | ||
Pullulan | Organic solvent extraction | Ethanol | [114] | |
Biopigments | Organic solvent extraction | Ethanol | [115] | |
6-Pentyl-a-pyrone | Soxhlet | Hexane | [10] | |
Phenalenones | Solid-solid extraction | Ethyl acetate | [116] | |
Mosquitocidal toxins | Water | [61] | ||
Secondary metabolites | Organic solvent extraction | Ethyl acetate | [117] | |
Bio-flocculant | Water | [38] | ||
Animal feed | Enhanced properties of feed | [26] | ||
Arabinoxylans | Water and enzyme assisted | Solvents used to separate compounds. | [30] | |
Bioethanol | Dual Vapor Permeation | [32] | ||
Isoliquiritigenin | Ultrasound extraction | Ethanol | [118] |
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lora Granado, R.; Souza Antune, A.D.; Valéria da Fonseca, F.; Sánchez, A.; Barrena, R.; Font, X. Technology Overview of Biogas production in anaerobic digestion plants: A European Evaluation of Research and Development. Renew. Sust. Energ. Rev. 2017, 80, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Cerda, A.; Artola, A.; Font, X.; Barrena, R.; Gea, T.; Sánchez, A. Composting of food wastes: Status and challenges. Bioresour. Technol. 2018, 248, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, A. Adding circularity to organic waste management: From waste to products through solid-state fermentation. Resour. Environ. Sustain. 2022, 8, 100062. [Google Scholar] [CrossRef]
- Yafetto, L. Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon 2022, 8, e09173. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Larroche, C.; Pandey, A. Current developments in solid-state fermentation. Biochem. Eng. J. 2013, 81, 146–161. [Google Scholar] [CrossRef]
- Ballardo, C.; Vargas-García, M.C.; Sánchez, A.; Barrena, R.; Artola, A. Adding value to home compost: Biopesticide properties through Bacillus thuringiensis inoculation. Waste Manag. 2020, 106, 32–43. [Google Scholar] [CrossRef]
- Arora, S.; Rani, R.; Ghosh, S. Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. J. Biotechnol. 2018, 269, 16–34. [Google Scholar] [CrossRef]
- Carboué, Q.; Rébuf, C.; Dupuy, N.; Roussos, S.; Bombarda, I. Solid state fermentation pilot-scaled plug flow bioreactor, using partial least square regression to predict the residence time in a semicontinuous process. Biochem. Eng. J. 2019, 149, 107248. [Google Scholar] [CrossRef]
- Finkler, A.T.J.; Weber, M.Z.; Fuchs, G.A.; Scholz, L.A.; de Lima Luz Jr, L.F.; Krieger, N.; Mitchell, D.A.; de Matos Jorge, L.M. Estimation of heat and mass transfer coefficients in a pilot packed-bed solid-state fermentation bioreactor. Chem. Eng. J. 2021, 408, 127246. [Google Scholar] [CrossRef]
- Rayhane, H.; Josiane, M.; Gregoria, M.; Yiannis, K.; Nathalie, D.; Ahmed, M.; Sevastianos, R. From flasks to single used bioreactor: Scale-up of solid state fermentation process for metabolites and conidia production by Trichoderma asperellum. J. Environ. Manag. 2019, 252, 109496. [Google Scholar] [CrossRef]
- Finkler, A.T.J.; de Lima Luz, L.F., Jr.; Krieger, N.; Mitchell, D.A.; de Matos Jorge, L.M. A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates. Biochem. Eng. J. 2021, 166, 107854. [Google Scholar] [CrossRef]
- Sahir, A.H.; Kumar, S.; Kumar, S. Modelling of a packed bed solid-state fermentation bioreactor using the N-tanks in series. Biochem. Eng. J. 2007, 35, 20–28. [Google Scholar] [CrossRef]
- Pesso, D.R.; Finkler, A.T.J.; Lopes Machado, A.V.; Mitchell, D.A.; de Lima Luz Jr, L.F. CFD simulation of a packed-bed solid-state fermentation bioreactor. Appl. Math. Model. 2019, 70, 439–458. [Google Scholar] [CrossRef]
- El-Bakry, M.; Abraham, J.; Cerda, A.; Barrena, R.; Ponsá, S.; Gea, T.; Sánchez, A. From wastes to high value added products: Novel aspects of SSF in the production of enzymes. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1999–2042. [Google Scholar] [CrossRef] [Green Version]
- Sala, A.; Barrena, R.; Artola, A.; Sánchez, A. Current developments in the production of fungal biological control agents by solid-state fermentation using organic solid waste. Crit. Rev. Environ. Sci. Technol. 2019, 49, 655–694. [Google Scholar] [CrossRef]
- Jiménez-Peñalver, P.; Koh, A.; Gross, R.; Gea, T.; Font, X. Biosurfactants from waste: Structures and interfacial properties of sophorolipids produced from a residual oil cake. J. Surfactants Deterg. 2020, 23, 481–486. [Google Scholar] [CrossRef]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Valorization of sugarcane bagasse and sugar beet molasses using Kluyveromyces marxianus for producing value-added aroma compounds via solid-state fermentation. J. Clean. Prod. 2017, 158, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Llimós, J.; Martínez-Avila, O.; Marti, E.; Corchado-Lopo, C.; Llenas, L.; Gea, T.; Ponsá, S. Brewer’s spent grain biotransformation to produce lignocellulolytic enzymes and polyhydroxyalkanoates in a two-stage valorization scheme. Biomass Conv. Bioref. 2020, 10, 3921–3932. [Google Scholar] [CrossRef]
- Partovinia, A.; Salimi Koochi, M.; Talaeian, M.; Rasooly Garmaroody, E. Comparative Study of Bioethanol Production from Bagasse Pith by Pichia Stipitis in Free Cell System and Immobilized Electrosprayed Micro-Beads: SSF and Combined Hydrolysates Fermentation. Sustain. Energy Technol. Assess. 2022, 54, 102855. [Google Scholar] [CrossRef]
- Bahry, H.; Pons, A.; Abdallah, R.; Pierre, G.; Delattre, C.; Fayad, N.; Taha, S.; Vial, C. Valorization of Carob Waste: Definition of a Second-Generation Bioethanol Production Process. Bioresour. Technol. 2017, 235, 25–34. [Google Scholar] [CrossRef]
- Yazid, N.A.; Barrena, R.; Komilis, D.; Sánchez, A. Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review. Sustainability 2017, 9, 224. [Google Scholar] [CrossRef] [Green Version]
- Sala, A.; Barrena, R.; Sánchez, A.; Artola, A. Fungal biopesticide production: Process scale-up and sequential batch mode operation with Trichoderma harzianum using agro-industrial solid wastes of different biodegradability. Chem. Eng. J. 2021, 425, 131620. [Google Scholar] [CrossRef]
- Chilakamarry, C.R.; Sakinah, A.M.M.; Zularisam, A.W.; Sirohi, R.; Khilji, I.A.; Ahmad, N.; Pandey, A. Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresour. Technol. 2022, 343, 126065. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Peñalver, P.; Castillejos, M.; Koh, A.; Gross, R.; Sánchez, A.; Font, X.; Gea, T. Production and characterization of sophorolipids from stearic acid by solid-state fermentation, a cleaner alternative to chemical surfactants. J. Clean. Prod. 2018, 172, 2735–2747. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, P.; Cerda, A.; Font, X.; Sánchez, A.; Artola, A. Valorisation of biowaste digestate through solid state fermentation to produce biopesticides from Bacillus thuringiensis. Waste Manag. 2019, 93, 63–71. [Google Scholar] [CrossRef]
- Costa-Silva, V.; Anunciação, M.; Andrade, E.; Fernandes, L.; Costa, A.; Fraga, I.; Barros, A.; Marques, G.; Ferreira, L.; Rodrigues, M. Biovalorization of Grape Stalks as Animal Feed by Solid State Fermentation Using White-Rot Fungi. Appl. Sci. 2022, 12, 6800. [Google Scholar] [CrossRef]
- Bonilla Loaiza, A.M.; Rodríguez-Jasso, R.M.; Belmares, R.; López-Badillo, C.M.; Araújo, R.G.; Aguilar, C.N.; Chávez, M.I.; Aguilar, M.A.; Ruiz, H.A. Fungal Proteins from Sargassum spp. Using Solid-State Fermentation as a Green Bioprocess Strategy. Molecules 2022, 27, 3887. [Google Scholar] [CrossRef]
- Yen, Y.F.; Chen, S.D. Influence of Radio Frequency Heating on the Pasteurization and Drying of Solid-State Fermented Wolfiporia cocos Products. Foods 2022, 11, 1766. [Google Scholar] [CrossRef]
- Martínez, M.; Rodríguez, A.; Gea, T.; Font, X. A Simplified Techno-Economic Analysis for Sophorolipid Production in a Solid-State Fermentation Process. Energies 2022, 15, 4077. [Google Scholar] [CrossRef]
- Cervantes-Ramirez, J.G.; Vasquez-Lara, F.; Sanchez-Estrada, A.; Troncoso-Rojas, R.; Heredia-Olea, E.; Islas-Rubio, A.R. Arabinoxylans Release from Brewers’ Spent Grain Using Extrusion and Solid-State Fermentation with Fusarium oxysporum and the Antioxidant Capacity of the Extracts. Foods 2022, 11, 1415. [Google Scholar] [CrossRef]
- Mehmood, T.; Saleem, F.; Javed, S.; Nawaz, S.; Sultan, A.; Safdar, A.; Ullah, A.; Waseem, R.; Saeed, S.; Abbas, M.; et al. Biotransformation of Agricultural By-Products into Biovanillin through Solid-State Fermentation (SSF) and Optimization of Different Parameters Using Response Surface Methodology (RSM). Fermentation 2022, 8, 206. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Li, S. Feasibility Study on Bioethanol Production by One Phase Transition Separation Based on Advanced Solid-State Fermentation. Energies 2021, 14, 6301. [Google Scholar] [CrossRef]
- Mulatu, A.; Alemu, T.; Megersa, N.; Vetukuri, R.R. Optimization of Culture Conditions and Production of Bio-Fungicides from Trichoderma Species under Solid-State Fermentation Using Mathematical Modeling. Microorganisms 2021, 9, 1675. [Google Scholar] [CrossRef] [PubMed]
- Arikan, E.B.; Canli, O.; Caro, Y.; Dufossé, L.; Dizge, N. Production of Bio-Based Pigments from Food Processing Industry By-Products (Apple, Pomegranate, Black Carrot, Red Beet Pulps) Using Aspergillus carbonarius. J. Fungi 2020, 6, 240. [Google Scholar] [CrossRef] [PubMed]
- Martínez, O.; Sánchez, A.; Font, X.; Barrena, R. Enhancing the bioproduction of value-added aroma compounds via solid-state fermentation of sugarcane bagasse and sugar beet molasses: Operational strategies and scaling-up of the process. Bioresour. Technol. 2018, 263, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadaki, A.; Androutsopoulos, N.; Patsalou, M.; Koutinas, M.; Kopsahelis, N.; Machado de Castro, A.; Papanikolaou, S.; Koutinas, A.A. Biotechnological Production of Fumaric Acid: The Effect of Morphology of Rhizopus arrhizus NRRL 2582. Fermentation 2017, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Subhan, M.; Faryal, R.; Macreadie, I. Utilization of an Industry Byproduct, Corymbia maculata Leaves, by Aspergillus terreus to Produce Lovastatin. Bioengineering 2020, 7, 101. [Google Scholar] [CrossRef]
- Zulkeflee, Z.; Sánchez, A. Solid-state fermentation of soybean residues for bioflocculant production in a pilot-scale bioreactor system. Water Sci. Technol. 2014, 70, 1032–1039. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Sánchez, A.; Font, X.; Barrena, R. 2-phenylethanol (rose aroma) production potential of an isolated Pichia kudriavzevii through solid-state fermentation. Process Biochem. 2020, 93, 94–103. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Varjani, S.; Taherzadeh, M.J.; Chang, J.-S.; Ng, H.Y.; Wong, J.W.C.; Kim, S.H. Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresour. Technol. 2022, 343, 126059. [Google Scholar] [CrossRef]
- Jiménez-Peñalver, P.; Gea, T.; Sánchez, A.; Font, X. Production of sophorolipids from winterization oil cake by solid-state fermentation: Optimization, monitoring and effect of mixing. Biochem. Eng. J. 2016, 115, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Malkapuram, S.T.; Sharma, V.; Gumfekar, S.P.; Sonawane, S.; Sonawane, S.; Boczkaj, G.; Seepana, M.M. A review on recent advances in the application of biosurfactants in wastewater treatment. Sustain. Energy Technol. Assess. 2021, 48, 101576. [Google Scholar] [CrossRef]
- De Graeve, M.; De Maeseneire, S.I.; Roelants, S.L.K.W.; Soetaert, W. Starmerella bombicola, an industrially relevant, yet fundamentally underexplored yeast. FEMS Yeast Res. 2018, 18, foy072. [Google Scholar] [CrossRef]
- Dierickx, S.; Castelein, M.; Remmery, J.; De Clercq, B.; Lodens, S.; Baccile, N.; De Maeseneire, S.L.; Roelants, S.L.K.W.; Soetaert, W. From bumblebee to bioeconomy: Recent developments and perspectives for sophorolipid biosynthesis. Biotechnol. Adv. 2022, 54, 107788. [Google Scholar] [CrossRef]
- Soccol, C.R.; Ferreira da Costa, E.S.; Junior Letti, L.A.; Karp, S.G.; Woiciechowski, A.L.; de Souza Vandenberghe, L.P. Recent developments and innovations in solid state fermentation. Biotechnol. Res. Innov. 2017, 1, 52–71. [Google Scholar] [CrossRef]
- Rodríguez, A.; Gea, T.; Font, X. Sophorolipids Production from Oil Cake by Solid-State Fermentation. Inventory for Economic and Environmental Assessment. Front. Chem. Eng. 2021, 3, 632752. [Google Scholar] [CrossRef]
- Hamelers, H.V.M. Modeling composting kinetics: A review of approaches. Rev. Environ. Sci. Biotechnol. 2004, 3, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Casciatori, F.P.; Bück, A.; Thoméo, J.C.; Tsotsas, E. Two-phase and two-dimensional model describing heat and water transfer during solid-state fermentation within a packed-bed bioreactor. Chem. Eng. J. 2016, 287, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Dolman, B.M.; Wang, F.; Winterburn, J.B. Integrated production and separation of biosurfactants. Proc. Biochem. 2019, 83, 1–8. [Google Scholar] [CrossRef]
- Puyuelo, B.; Gea, T.; Sánchez, A. A new control strategy for the composting process based on the oxygen uptake rate. Chem. Eng. J. 2010, 1, 161–169. [Google Scholar] [CrossRef]
- Ceresa, C.; Hutton, S.; Lajarin-Cuesta, M.; Heaton, R.; Hargreaves, I.; Fracchia, L.; De Rienzo, M.A.D. Production of Mannosylerythritol Lipids (MELs) to be Used as Antimicrobial Agents Against, S. aureus ATCC 6538. Curr. Microbiol. 2020, 77, 1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onwosi, C.O.; Aliyu, G.O.; Onu, C.J.; Chukwu, K.O.; Ndukwe, J.K.; Igbokwe, V.C. Microbial-derived glycolipids in the sustainable formulation of biomedical and personal care products: A consideration of the process economics towards commercialization. Process Biochem. 2021, 100, 124–139. [Google Scholar] [CrossRef]
- Jallouli, W.; Driss, F.; Fillaudeau, L.; Rouis, S. Review on biopesticide production by Bacillus thuringiensis subsp. kurstaki since 1990: Focus on bioprocess parameters. Process Biochem. 2020, 98, 224–232. [Google Scholar] [CrossRef]
- Mejias, M.; Estrada, M.; Barrena, R.; Gea, T. A novel two-stage aeration strategy for Bacillus thuringiensis biopesticide production from biowaste digestate through solid-state fermentation. Biochem. Eng. J. 2020, 161, 107644. [Google Scholar] [CrossRef]
- Cerda, A.; Mejias, L.; Rodríguez, P.; Rodríguez, A.; Artola, A.; Font, X.; Gea, T.; Sánchez, A. Valorisation of digestate from biowaste through solid-state fermentation to obtain value added bioproducts: A first approach. Bioresour. Technol. 2019, 271, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Sala, A.; Vittone, S.; Barrena, R.; Sánchez, A.; Artola, A. Scanning agro-industrial wastes as substrates for fungal biopesticide production: Use of Beauveria bassiana and Trichoderma harzianum in solid-state fermentation. J. Environ. Manag. 2021, 295, 113113. [Google Scholar] [CrossRef]
- Sharma, A.; Salwan, R.; Sharma, V. Extracellular proteins of Trichoderma and their role in plant health. S. Afr. J. Bot. 2022, 147, 359–369. [Google Scholar] [CrossRef]
- Sala, A.; Artola, A.; Sánchez, A.; Barrena, R. Rice husk as a source for fungal biopesticide production by solid-state fermentation using B. bassiana and T. harzianum. Bioresour. Technol. 2020, 296, 122322. [Google Scholar] [CrossRef]
- Mejia, C.; Ardila, H.D.; Espinel, C.; Brandao, P.F.B.; Villamizar, L. Use of Trichoderma koningiopsis chitinase to enhance the insecticidal activity of Beauveria bassiana against Diatraea saccharalis. J. Basic Microbiol. 2021, 61, 814–824. [Google Scholar] [CrossRef]
- Villamizar, L.F.; Barrera, G.; Hurst, M.; Glare, T.R. Characterization of a new strain of Metarhizium novozealandicum with potential to be developed as a biopesticide. Mycology 2021, 12, 261–278. [Google Scholar] [CrossRef]
- El-Bendary, M.A.; Moharam, M.E. Formulation of spore toxin complex of Bacillus thuringiensis and Lysinibacillus sphaericus grown under solid state fermentation. Biol. Control 2019, 131, 54–61. [Google Scholar] [CrossRef]
- Ballardo, C.; Barrena, R.; Artola, A.; Sánchez, A. A novel strategy for producing compost with enhanced biopesticide properties through solid-state fermentation of biowaste and inoculation with Bacillus thuringiensis. Waste Manag. 2017, 70, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V.; Ahluwalia, V.; Saran, S.; Kumar, J.; Kumar Patel, A.; Singhania, R.R. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresour. Technol. 2021, 323, 124566. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Pérez-Sánchez, A.; Bibián, M.E. New knowledge about the biosynthesis of lovastatin and its production by fermentation of Aspergillus terreus. Appl. Microbiol. Biotechnol. 2020, 104, 8979–8998. [Google Scholar] [CrossRef] [PubMed]
- Ábrego-Gacía, A.; Poggi-Varaldo, H.M.; Mendoza-Vargas, A.; Mercado-Valle, F.G.; Ríos-Leal, E.; Ponce-Noyola, T.; Calva-Calva, G. Effects of Fermented Oat Straw as a Lovastatin Carrier on in vitro Methane Production and Rumen Microbiota. Front. Energy Res. 2021, 9, 630701. [Google Scholar] [CrossRef]
- Al Farraj, D.A.; Varghese, R.; Vágvölgyi, C.; Elshikh, M.S.; Alokda, A.M.; Mahmoud, A.H. Antibiotics production in optimized culture condition using low cost substrates from Streptomyces sp. AS4 isolated from mangrove soil sediment. J. King Saud Uni. Sci. 2020, 32, 1528–1535. [Google Scholar] [CrossRef]
- El-Housseiny, G.S.; Ibrahim, A.A.; Yassien, M.A.; Aboshanab, K.M. Production and statistical optimization of Paromomycin by Streptomyces rimosus NRRL 2455 in solid state fermentation. BMC Microbiol. 2021, 21, 34. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Muñoz-Torrero, P.; Sánchez, A.; Font, X.; Barrena, R. Valorization of agro-industrial wastes by producing 2-phenylethanol via solid-state fermentation: Influence of substrate selection on the process. Waste Manag. 2021, 121, 403–411. [Google Scholar] [CrossRef]
- Szacherska, K.; Oleskowicz-Popiel, P.; Ciesielski, S.; Mozejko-Ciesielska, J. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates. Polymers 2021, 13, 321. [Google Scholar] [CrossRef]
- Hokamura, A.; Yunoue, Y.; Goto, S.; Matsusaki, H. Biosynthesis of Polyhydroxyalkanoate from Steamed Soybean Wastewater by a Recombinant Strain of Pseudomonas sp. 61-3. Bioengineering 2017, 4, 68. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Llenas, L.; Ponsá, S. Sustainable polyhydroxyalkanoates production via solid-state fermentation: Influence of the operational parameters and scaling up of the process. Food Bioprod. Process. 2022, 132, 13–22. [Google Scholar] [CrossRef]
- Tripathia, A.D.; Paul, V.; Agarwal, A.; Sharma, R.; Hashempour-Baltork, F.; Rashidi, L.; Darani, K.K. Production of polyhydroxyalkanoates using dairy processing waste—A review. Bioresour. Technol. 2021, 326, 124735. [Google Scholar] [CrossRef] [PubMed]
- Castilho, L.R.; Mitchell, D.A.; Freire, D.M.G. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour. Technol. 2009, 100, 5996–6009. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Leite, P.; Belo, I.; Salgado, J.M. Co-management of agro-industrial wastes by solid-state fermentation for the production of bioactive compounds. Ind. Crops Prod. 2021, 172, 113990. [Google Scholar] [CrossRef]
- Eliopoulos, C.; Markou, G.; Chorianopoulos, N.; Haroutounian, S.A.; Arapoglou, D. Transformation of mixtures of olive mill stone waste and oat bran or Lathyrus clymenum pericarps into high added value products using solid state fermentation. Waste Manag. 2022, 149, 168–176. [Google Scholar] [CrossRef]
- Madeira Junior, J.V.; Speranza, P.; Alves Macedo, G. Phenolic compounds and tannase production by solid-state fermentation in orange pomace. New Biotechnol. 2012, 29, S94. [Google Scholar] [CrossRef]
- Roasa, J.; De Villa, R.; Mine, Y.; Tsao, R. Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends Food Sci. Technol. 2021, 116, 954–974. [Google Scholar] [CrossRef]
- da Costa Maia, I.; dos Santos D’Almeida, C.T.; Guimarães Freire, D.M.; d’Avila Costa Cavalcanti, E.; Cameron, L.C.; Dias, J.-F.; Larraz Ferreira, M.S. Effect of solid-state fermentation over the release of phenolic compounds from brewer’s spent grain revealed by UPLC-MSE. LWT 2020, 133, 110136. [Google Scholar] [CrossRef]
- Casciatori, F.P.; Thomeo, J.C. Heat transfer in packed-beds of agricultural waste with low rates of air flow applicable to solid-state fermentation. Chem. Eng. Sci. 2018, 188, 97–111. [Google Scholar] [CrossRef]
- Montoya, S.; Patiño, A.; Sánchez, O.J. Production of lignocellulolytic enzymes and biomass of Trametes versicolor from agro-industrial residues in a novel fixed-bed bioreactor with natural convection and forced aeration at pilot scale. Processes 2021, 9, 397. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, Q.; Ren, A.; Ge, L.; He, J.; Zhao, M.; He, Q. Roles of water in improved production of mycelial biomass and lignocellulose-degrading enzymes by water-supply solid-state fermentation of Ganoderma lucidum. J. Biosci. Bioeng. 2022, 133, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Carboue, Q.; Rebufa, C.; Hamrouni, R.; Roussos, S.; Bombarda, I. Statistical approach to evaluate effect of temperature and moisture content on the production of antioxidant naphtho-gamma-pyrones and hydroxycinnamic acids by Aspergillus tubingensis in solid-state fermentation. Bioprocess Biosyst. Eng. 2020, 43, 2283–2294. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.A.; Pitol, L.O.; Biz, A.; Finkler, A.T.J.; de Lima Luz, L.F.; Krieger, N. Design and Operation of a Pilot-Scale Packed-Bed Bioreactor for the Production of Enzymes by Solid-State Fermentation. In Advances in Biochemical Engineering/Biotechnology; Solid State Fermentation; Steudler, S., Werner, A., Cheng, J., Eds.; Springer: Cham, Switzerland, 2019; Volume 169. [Google Scholar] [CrossRef]
- Raghavarao, K.S.M.S.; Ranganathan, T.V.; Karanth, N.G. Some engineering aspects of solid-state fermentation. Biochem. Eng. J. 2003, 13, 127–135. [Google Scholar] [CrossRef]
- Vauris, A.; Valcauda, S.; Husson, F.; De Coninck, J. A novel method to assess heat transfer and impact of relevant physicochemical parameters for the scaling up of solid state fermentation systems. Biotech. Rep. 2022, 36, e00764. [Google Scholar] [CrossRef]
- Yovita, S.P.; Tramper, R.J.; Rinzema, A. Modeling conversion and transport phenomena in solid-state fermentation: A review and perspectives. Biotech. Adv. 2006, 24, 161–179. [Google Scholar] [CrossRef]
- Pallín, M.A.; González-Rodríguez, S.; Eibes, G.; López-Abelairas, M.; Moreira, M.T.; Lema, J.M.; Lú-Chau, T.A. Towards industrial application of fungal pretreatment in 2G biorefinery: Scale-up of solid-state fermentation of wheat straw. Biomass Conv. Bioref. 2022. [CrossRef]
- Nigam, S.N.; Pandey, A. Biotechnology for Agro-Industrial Residues Utilisation: Utilisation of Agro-Residues; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany, 2009; ISBN 9781402099410. [Google Scholar]
- Kosaric, N.; Vardar-Sukan, F. Biosurfactants. Production and Utilization—Processes, Technologies, and Economics; Academic Press: Cambridge, MA, USA, 2015; ISBN 978-1-4665-9669-6. [Google Scholar]
- Abd El-Ghaffar El-Bendary, M.; El-sayed Moharam, M.; Ragab Hamed, S.; Saleh Mohamed, S. Downstream Processing of Mosquitocidal Toxins from Solid State Fermentation of Lysinibacillus Sphaericus and Bacillus thuringiensis israelensis. Malays. J. Microbiol. 2017, 13, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Pati, S.; Maity, S.; Dash, A.; Jema, S.; Mohapatra, S.; Das, S.; Samantaray, D.P. Biocompatible PHB Production from Bacillus Species Under Submerged and Solid-State Fermentation and Extraction Through Different Downstream Processing. Curr. Microbiol. 2020, 77, 1203–1209. [Google Scholar] [CrossRef]
- Konkol, D.; Szmigiel, I.; Domżał-Kędzia, M.; Kułażyński, M.; Krasowska, A.; Opaliński, S.; Korczyński, M.; Łukaszewicz, M. Biotransformation of Rapeseed Meal Leading to Production of Polymers, Biosurfactants, and Fodder. Bioorg. Chem. 2019, 93, 102865. [Google Scholar] [CrossRef]
- Rodríguez Fernández, D.E.; Rodríguez León, J.A.; de Carvalho, J.C.; Karp, S.G.; Parada, J.L.; Soccol, C.R. Process Development to Recover Pectinases Produced by Solid-State Fermentation. J. Bioproces. Biotechniq. 2012, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Aggelopoulos, T.; Katsieris, K.; Bekatorou, A.; Pandey, A.; Banat, I.M.; Koutinas, A.A. Solid State Fermentation of Food Waste Mixtures for Single Cell Protein, Aroma Volatiles and Fat Production. Food Chem. 2014, 145, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D. Biosurfactants: Greener Surface-Active Agents for Sustainable Future; Springer: Singapore, 2021; ISBN 978-981-16-2704-0. [Google Scholar]
- Cano y Postigo, L.O.; Jacobo-Velázquez, D.A.; Guajardo-Flores, D.; Garcia Amezquita, L.E.; García-Cayuela, T. Solid-State Fermentation for Enhancing the Nutraceutical Content of Agrifood by-Products: Recent Advances and Its Industrial Feasibility. Food Biosci. 2021, 41, 100926. [Google Scholar] [CrossRef]
- Castilho, L.R.; Medronho, R.A.; Alves, T.L.M. Production and Extraction of Pectinases Obtained by Solid State Fermentation of Agroindustrial Residues with Aspergillus niger. Bioresour. Technol. 2000, 71, 45–50. [Google Scholar] [CrossRef]
- Singhania, R.R.; Patel, A.K.; Soccol, C.R.; Pandey, A. Recent Advances in Solid-State Fermentation. Biochem. Eng. J. 2009, 44, 13–18. [Google Scholar] [CrossRef]
- Rivero, C.P.; Hu, Y.; Kwan, T.H.; Webb, C.; Theodoropoulos, C.; Daoud, W.; Lin, C.S.K. Bioplastics from Solid Waste. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–26. [Google Scholar] [CrossRef]
- Gong, Z.; He, Q.; Che, C.; Liu, J.; Yang, G. Optimization and Scale-up of the Production of Rhamnolipid by Pseudomonas Aeruginosa in Solid-State Fermentation Using High-Density Polyurethane Foam as an Inert Support. Bioprocess Biosyst. Eng. 2020, 43, 385–392. [Google Scholar] [CrossRef]
- El-Housseiny, G.S.; Aboshanab, K.M.; Aboulwafa, M.M.; Hassouna, N.A. Rhamnolipid Production by a Gamma Ray-Induced Pseudomonas Aeruginosa Mutant under Solid State Fermentation. AMB Express 2019, 9, 7. [Google Scholar] [CrossRef]
- Kreling, N.E.; Simon, V.; Fagundes, V.D.; Thomé, A.; Colla, L.M. Improving the Bioremediation and in Situ Production of Biocompounds of a Biodiesel-Contaminated Soil. Environ. Manag. 2021, 68, 210–225. [Google Scholar] [CrossRef]
- Zhang, C.; Ali Khan, R.A.; Wei, H.Y.; Wang, R.; Hou, J.M.; Liu, T. Rapid and Mass Production of Biopesticide Trichoderma Brev T069 from Cassava Peels Using Newly Established Solid-State Fermentation Bioreactor System. J. Environ. Manag. 2022, 313, 114981. [Google Scholar] [CrossRef]
- Sathiyanarayanan, G.; Kiran, G.S.; Selvin, J.; Saibaba, G. Optimization of Polyhydroxybutyrate Production by Marine Bacillus Megaterium MSBN04 under Solid State Culture. Int. J. Biol. Macromol. 2013, 60, 253–261. [Google Scholar] [CrossRef]
- Fadel, H.H.M.; Mahmoud, M.G.; Asker, M.M.S.; Lotfy, S.N. Characterization and Evaluation of Coconut Aroma Produced by Trichoderma Viride EMCC-107 in Solid State Fermentation on Sugarcane Bagasse. Electron. J. Biotechnol. 2015, 18, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Mantzouridou, F.T.; Paraskevopoulou, A.; Lalou, S. Yeast Flavour Production by Solid State Fermentation of Orange Peel Waste. Biochem. Eng. J. 2015, 101, 1–8. [Google Scholar] [CrossRef]
- Juodeikiene, G.; Cizeikiene, D.; Ceskeviciute, V.; Vidmantiene, D.; Basinskiene, L.; Akuneca, I.; Stankevicius, M.; Maruska, A.; Bartkiene, E.; Ragazinskiene, O. Solid-State Fermentation of Silybum Marianum L. Seeds Used as Additive to Increase the Nutritional Value of Wheat Bread. Food Technol. Biotechnol. 2013, 51, 528–538. [Google Scholar]
- Kaur, P.; Ghoshal, G.; Jain, A. Bio-Utilization of Fruits and Vegetables Waste to Produce β-Carotene in Solid-State Fermentation: Characterization and Antioxidant Activity. Process Biochem. 2019, 76, 155–164. [Google Scholar] [CrossRef]
- Espinosa-Pardo, F.A.; Nakajima, V.M.; Macedo, G.A.; Macedo, J.A.; Martínez, J. Extraction of Phenolic Compounds from Dry and Fermented Orange Pomace Using Supercritical CO2 and Cosolvents. Food Bioprod. Process. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- He, Y.T.; Zhang, X.L.; Xie, Y.M.; Xu, Y.X.; Li, J.R. Extraction and Antioxidant Property In Vitro of Cordycepin in Artificially Cultivated Cordyceps militaris. Adv. Mater. Res. 2013, 750–752, 1593–1596. [Google Scholar] [CrossRef]
- Kumar Shetty, A.V.; Dave, N.; Murugesan, G.; Pai, S.; Pugazhendhi, A.; Varadavenkatesan, T.; Vinayagam, R.; Selvaraj, R. Production and Extraction of Red Pigment by Solid-State Fermentation of Broken Rice Using Monascus Sanguineus NFCCI 2453. Biocatal. Agric. Biotechnol. 2021, 33, 101964. [Google Scholar] [CrossRef]
- Saeed, S.; Aslam, S.; Mehmood, T.; Naseer, R.; Nawaz, S.; Mujahid, H.; Firyal, S.; Anjum, A.A.; Sultan, A. Production of Gallic Acid Under Solid-State Fermentation by Utilizing Waste from Food Processing Industries. Waste Biomass Valori. 2021, 12, 155–163. [Google Scholar] [CrossRef]
- Sugumaran, K.R.; Ponnusami, V. Conventional Optimization of Aqueous Extraction of Pullulan in Solid-State Fermentation of Cassava Bagasse and Asian Palm Kernel. Biocatal. Agric. Biotechnol. 2017, 10, 204–208. [Google Scholar] [CrossRef]
- Sehrawat, R.; Kumar; Bashir, K.; Prakash, K.; Swer, T.; Kumar, A. Bioutilization of Agro-Industrial Waste to Produce Biopigment Using Monascus purpureus MTCC 369 by Solid State Fermentation. Indian J. Ecol. 2016, 43, 128–133. [Google Scholar]
- le Goff, G.; Lopes, P.; Arcile, G.; Vlachou, P.; van Elslande, E.; Retailleau, P.; Gallard, J.F.; Weis, M.; Benayahu, Y.; Fokialakis, N. Impact of the Cultivation Technique on the Production of Secondary Metabolites by Chrysosporium Lobatum TM-237-S5, Isolated from the Sponge Acanthella Cavernosa. Mar. Drugs 2019, 17, 678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, S.Y.; Lee, S.; Singh, D.; Lee, N.R.; Lee, D.Y.; Lee, C.H. Comprehensive Secondary Metabolite Profiling toward Delineating the Solid and Submerged-State Fermentation of Aspergillus Oryzae KCCM 12698. Front. Microbiol. 2018, 9, 1076. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Li, D.; Jing, Y.; Zhang, L.; Liu, J.; Ji, Y. Solid-State Fermentation of Aspergillus Niger to Optimize Extraction Process of Isoliquiritigenin from Glycyrrhiz auralensis. Evid. Based Complement. Altern. Med. 2020, 2020, 8927858. [Google Scholar] [CrossRef] [PubMed]
- Eras-Muñoz, E.; Farré, A.; Sánchez, A.; Font, X.; Gea, T. Microbial Biosurfactants: A Review of Recent Environmental Applications. Bioengineered 2022, 13, 12365–12391. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.A.; Arnaud, T.; Lu-Chau, T.A.; Fdz-Polanco, M.; Teresa Moreira, M.; Andrés Cacho Rivero, J. Review of Solid State Fermentation for Lignocellulolytic Enzyme Production: Challenges for Environmental Applications. Rev. Environ. Sci. Bio/Technol. 2016, 15, 31–46. [Google Scholar] [CrossRef]
- Marín, M.; Artola, A.; Sánchez, A. Production of Proteases from Organic Wastes by Solid-State Fermentation: Downstream and Zero Waste Strategies. 3 Biotech 2018, 8, 205. [Google Scholar] [CrossRef]
SSF Objectives and Waste Description | Bioproduct | Strain | Reference |
---|---|---|---|
Degrade lignin and enhance the nutritive value of grape stalks. Lab scale incubators. | Animal feed | White rot fungi | [26] |
Sargassum spp. macroalgae biomass subjected to hydrothermal pretreatments. Packed bed bioreactors. | Fungal proteins | Aspergillus oryzae | [27] |
Rice bran and soybean residue. Radio frequency rapid heating technology is used to dry the solid-state fermented product. Lab scale incubators. | Antioxidants | Wolfiporia cocos | [28] |
Winterization oil cake and molasses to produce sophorolipids. Techno-Economic Analysis is presented at bench scale. | Sophorolipids | Starmerella bombicola | [29] |
SSF of brewers’ spent grain, after two pretreatments: extrusion and blade milling. Lab scale incubators. | Phenolic acids with antioxidant capacity | Fusarium oxysporum | [30] |
Various agricultural lignocellulosic by-products (sugarcane bagasse, wheat straw, rice straw, rice bran, and corn cob). Lab scale incubators. | Biovanillin | Enterobacter hormaechei | [31] |
Combined continuous solid-state distillation and vapor permeation to extract ethanol from fermented sweet sorghum bagasse. Rotary drum fermenter. Full scale (cubic meters). | Bioethanol | Saccharomyces cerevisiae | [32] |
Wheat bran and white rice in SSF optimized by an experimental design to build a mathematical model. Lab scale incubators. | Fungicide | Trichoderma species | [33] |
Food processing industry by-products (apple, pomegranate, black carrot, and red beet pulps) as raw materials for SSF. Lab scale incubators. | Pigments | Aspergillus carbonarius | [34] |
Sequential batch operational strategy for fungal conidia production at bench scale using rice husk and beer draff as substrates. 22 L packed bed bioreactors. | Biopesticide | Trichoderma harzianum | [22] |
SSF of the mixture sugarcane bagasse/sugar beet molasses used for producing a mixture of value-added fruit-like compounds. Fed-batch, static-batch and intermittent mixing at bench scale. | Fruit-like aromas | Kluyveromyces marxianus | [35] |
Soybean cake hydrolysate as substrate in SSF and compared to submerged fermentation. Lab scale incubators. | Fumaric acid | Rhizopus arrhizus | [36] |
Corymbia maculata leaves used as substrate in SSF for high added value product. Lab scale incubators. | Lovastatin | Aspergillus terreus | [37] |
Soybean residues were used in SSF. SSF carried out in 4.5 L near-to-adiabatic packed bed bioreactors | Bio-flocculants | Bacillus subtilis | [38] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oiza, N.; Moral-Vico, J.; Sánchez, A.; Oviedo, E.R.; Gea, T. Solid-State Fermentation from Organic Wastes: A New Generation of Bioproducts. Processes 2022, 10, 2675. https://doi.org/10.3390/pr10122675
Oiza N, Moral-Vico J, Sánchez A, Oviedo ER, Gea T. Solid-State Fermentation from Organic Wastes: A New Generation of Bioproducts. Processes. 2022; 10(12):2675. https://doi.org/10.3390/pr10122675
Chicago/Turabian StyleOiza, Nicolás, Javier Moral-Vico, Antoni Sánchez, Edgar Ricardo Oviedo, and Teresa Gea. 2022. "Solid-State Fermentation from Organic Wastes: A New Generation of Bioproducts" Processes 10, no. 12: 2675. https://doi.org/10.3390/pr10122675
APA StyleOiza, N., Moral-Vico, J., Sánchez, A., Oviedo, E. R., & Gea, T. (2022). Solid-State Fermentation from Organic Wastes: A New Generation of Bioproducts. Processes, 10(12), 2675. https://doi.org/10.3390/pr10122675