Experimental Characterization of a Microfluidic Device Based on Passive Crossflow Filters for Blood Fractionation
Abstract
:1. Introduction
2. Methods
2.1. Microchannel Design and Fabrication
2.2. Blood and Blood Analogue Samples
2.3. Experimental Setup
2.4. Optical Characterization
3. Results and Discussion
3.1. Fluid Volume
3.2. Absorbance
3.3. ImageJ Analysis
4. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.T.; Ebrahimi Warkiani, M.; Li, W. Fundamentals and applications of inertial microfluidics: A review. Lab Chip 2016, 16, 10–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasiri, R.; Shamloo, A.; Ahadian, S.; Amirifar, L.; Akbari, J.; Goudie, M.J.; Lee, K.; Ashammakhi, N.; Dokmeci, M.R.; Di Carlo, D.; et al. Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications. Small 2020, 16, 2000171. [Google Scholar] [CrossRef] [PubMed]
- Catarino, S.O.; Rodrigues, R.O.; Pinho, D.; Miranda, J.M.; Minas, G.; Lima, R. Blood Cells Separation and Sorting Techniques of Passive Microfluidic Devices: From Fabrication to Applications. Micromachines 2019, 10, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyatt Shields Iv, C.; Reyes, C.D.; López, G.P. Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 2015, 15, 1230–1249. [Google Scholar] [CrossRef] [Green Version]
- Pinho, D.; Faustino, V.; Catarino, S.O.; Pereira, A.I.; Minas, G.; Pinho, F.T.; Lima, R. Label-free multi-step microfluidic device for mechanical characterization of blood cells: Diabetes type II. Micro Nano Eng. 2022, 16, 100149. [Google Scholar] [CrossRef]
- Dalili, A.; Samiei, E.; Hoorfar, M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: Microfluidic approaches. Analyst 2019, 144, 87–113. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Yazdi, S.; Ardekani, A.M. Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 2013, 7, 021501. [Google Scholar] [CrossRef] [Green Version]
- Karimi, S.; Mojaddam, M.; Majidi, S.; Mehrdel, P.; Farré-Lladós, J.; Casals-Terré, J. Numerical and experimental analysis of a high-throughput blood plasma separator for point-of-care applications. Anal. Bioanal. Chem. 2021, 413, 2867–2878. [Google Scholar] [CrossRef]
- Alvankarian, J.; Bahadorimehr, A.; Yeop Majlis, B. A pillar-based microfilter for isolation of white blood cells on elastomeric substrate. Biomicrofluidics 2013, 7, 14102. [Google Scholar] [CrossRef] [Green Version]
- Keskinler, B.; Yildiz, E.; Erhan, E.; Dogru, M.; Bayhan, Y.K.; Akay, G. Crossflow microfiltration of low concentration-nonliving yeast suspensions. J. Memb. Sci. 2004, 233, 59–69. [Google Scholar] [CrossRef]
- Chen, X.; Cui, D.F.; Liu, C.C.; Li, H. Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens. Actuators B Chem. 2008, 130, 216–221. [Google Scholar] [CrossRef]
- Rodrigues, R.O.; Pinho, D.; Faustino, V.; Lima, R. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow. Biomed. Microdevices 2015, 17, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faustino, V.; Catarino, S.O.; Pinho, D.; Lima, R.A.; Minas, G. A passive microfluidic device based on crossflow filtration for cell separation measurements: A spectrophotometric characterization. Biosensors 2018, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Faustino, V.; Pinho, D.; Catarino, S.O.; Minas, G.; Lima, R.A. Geometry effect in multi-step crossflow microfluidic devices for red blood cells separation and deformability assessment. Biomed. Microdevices 2022, 24, 20. [Google Scholar] [CrossRef] [PubMed]
- Laxmi, V.; Joshi, S.S.; Agrawal, A. Biophysical Phenomenon-Based Separation of Platelet-Poor Plasma from Blood. Ind. Eng. Chem. Res. 2021, 60, 7464–7473. [Google Scholar] [CrossRef]
- Liu, S.C.; Yoo, P.B.; Garg, N.; Lee, A.P.; Rasheed, S. A microfluidic device for blood plasma separation and fluorescence detection of biomarkers using acoustic microstreaming. Sensors Actuators A Phys. 2021, 317, 112482. [Google Scholar] [CrossRef]
- Sadek, S.H.; Rubio, M.; Lima, R.; Vega, E.J. Blood Particulate Analogue Fluids: A Review. Materials 2021, 14, 2451. [Google Scholar] [CrossRef] [PubMed]
- Miranda, I.; Souza, A.; Sousa, P.; Ribeiro, J.; Castanheira, E.M.S.; Lima, R.; Minas, G. Properties and Applications of PDMS for Biomedical Engineering: A Review. J. Funct. Biomater. 2021, 13, 2. [Google Scholar] [CrossRef]
- Choi, Y.H.; Chung, K.H.; Hong, H.B.; Lee, W.S. Production of PDMS microparticles by emulsification of two phases and their potential biological application. Int. J. Polym. Mater. Polym. Biomater. 2017, 67, 686–692. [Google Scholar] [CrossRef]
- López, M.; Rubio, M.; Sadek, S.H.; Vega, E.J. A simple emulsification technique for the production of micro-sized flexible powder of polydimethylsiloxane (PDMS). Powder Technol. 2020, 366, 610–616. [Google Scholar] [CrossRef]
- Lima, R.; Vega, E.J.; Moita, A.S.; Miranda, J.M.; Pinho, D.; Moreira, A.L.N. Fast, flexible and low-cost multiphase blood analogue for biomedical and energy applications. Exp. Fluids 2020, 61, 231. [Google Scholar] [CrossRef]
- Costa, M.S.; Baptista, V.; Ferreira, G.M.; Lima, D.; Minas, G.; Veiga, M.I.; Catarino, S.O. Multilayer thin-film optical filters for reflectance-based malaria diagnostics. Micromachines 2021, 12, 890. [Google Scholar] [CrossRef] [PubMed]
- Lana Rosa, C.; Priscila Oliveira Souza Martins, F.D.E.; Dos Santos Arantes, R.; Mauricio Silva, V.D.A.; Marcel Oliveira, T.; Argolo Saliba, W. Construção De Espectrofotômetro Visível Para Fins Didáticos Construction of Visible Spectrophotometer for Didactic Studies. J. Exact Sci. 2019, 21, 20–25. [Google Scholar]
- Al Khalid, I.; Mohammad, K.S.D.; AlSalhi, M.S.; Prasad, S.; Masilamani, V.; Zuhaier, A.-K.I.; Mohammad, K.; Devanesan, S.; AlSalhi, M.S. Shelf-life enhancement of donor blood by He–Ne laser biostimulation. Curr. Sci. 2015, 109, 1151–1153. [Google Scholar]
- Maciel, C.; Fujita, A.; Gueroni, D.I.; Ramos, A.D.; Capurro, M.L.; Sá-Nunes, A. Evans Blue as a Simple Method to Discriminate Mosquitoes’ Feeding Choice on Small Laboratory Animals. PLoS ONE 2014, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, R.; Zhou, Y.; Nikfar, M.; Razizadeh, M.; Liu, Y. Quantitative absorption imaging of red blood cells to determine physical and mechanical properties. RSC Adv. 2020, 10, 38923–38936. [Google Scholar] [CrossRef] [PubMed]
Microfluidic Device | |||
---|---|---|---|
Step 1 | a = 830 µm b = 1030 µm | c = 55 µm d = 50 µm e = 10 µm | |
Step 2 | a = 830 µm b = 1030 µm | c = 55 µm d = 50 µm e = 10 µm | |
Step 3 | a = 830 µm b = 1030 µm | c = 55 µm d = 50 µm e = 10 µm | |
Hyperbolic Constrictions | |||
f = 2500 µm g = 3000 µm h = 318.8 µm i = 19.9 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, I.M.; Castro, I.; Barbosa, F.; Faustino, V.; Catarino, S.O.; Moita, A.; Miranda, J.M.; Minas, G.; Sousa, P.C.; Lima, R. Experimental Characterization of a Microfluidic Device Based on Passive Crossflow Filters for Blood Fractionation. Processes 2022, 10, 2698. https://doi.org/10.3390/pr10122698
Gonçalves IM, Castro I, Barbosa F, Faustino V, Catarino SO, Moita A, Miranda JM, Minas G, Sousa PC, Lima R. Experimental Characterization of a Microfluidic Device Based on Passive Crossflow Filters for Blood Fractionation. Processes. 2022; 10(12):2698. https://doi.org/10.3390/pr10122698
Chicago/Turabian StyleGonçalves, Inês M., Inês Castro, Filipe Barbosa, Vera Faustino, Susana O. Catarino, Ana Moita, João M. Miranda, Graça Minas, Patrícia C. Sousa, and Rui Lima. 2022. "Experimental Characterization of a Microfluidic Device Based on Passive Crossflow Filters for Blood Fractionation" Processes 10, no. 12: 2698. https://doi.org/10.3390/pr10122698
APA StyleGonçalves, I. M., Castro, I., Barbosa, F., Faustino, V., Catarino, S. O., Moita, A., Miranda, J. M., Minas, G., Sousa, P. C., & Lima, R. (2022). Experimental Characterization of a Microfluidic Device Based on Passive Crossflow Filters for Blood Fractionation. Processes, 10(12), 2698. https://doi.org/10.3390/pr10122698