Building a Digital Twin Simulator Checking the Effectiveness of TEG-ICE Integration in Reducing Fuel Consumption Using Spatiotemporal Thermal Filming Handled by Neural Network Technique
Abstract
:1. Introduction
2. The Architecture of the Digital-Twin Simulators’ Paradigm
Algorithm 1: Main Pseudocode of STTF-NN-ACO mechanism |
//The components of the digital simulator’s twin (ICE, TEG, and thermal conductor’s strips) //The mechanical and composite of tested alloys discussed by Admiral et al. [40], and Richard & Hertzberg [41] //Stage (1): Check the reliability of the thermal conductors by imaging Determine the TEG gasket plate’s install (hot at the exhaust gate, cold at the intake gate) Determine the gasket texture ((Fe − Al),(Fe − Cu),(Al − Cu)) for alloy 1:3 if (gasket texture and its strips from ((Fe − Al)) for 1 : causes Select the high failure cause (Figure 1: Cause-and-effect diagram); Determine the gasket surface coordinates (i denotes the x-axis and the j denotes y-axis); Using Spatiotemporal Thermal Filming STTF to: Record the working time (hr.); Locate thermal conduction failure positions, , the position of the starting of the cracks’ point; for 1 : cracks Count the number of each crack’s ramifications b; Determine the two longest ramifications lengths for each crack; Determine the tilt angle of each ramification to the x-axis; Determine the P(i,j) of the end terminal for each tracing ramification; Determine the intensity QP of each crack at specific position (the number of their ramifications); //Stage (2): Predicting generated electricity STTF-NN-ACO Predict the virtual curve line direction of cracks direction as illustrated in (Figure 4) by hybridizing meta-heuristic with the neural network to reduce the error of sketching the secure path of installing the thermal conductors’ strips; Measure the efficiency, f (amount of heat conductivity, electrical power generation); Else if (gasket texture and its strips from next alloy) End End |
3. Stage (1): Tracking Thermal Conductors’ Failure Causes
3.1. Setting the Significant Parameters of Thermal Conductivity
3.2. Measure the Generated Electricity
4. Stage (2): Predicting the Integration Efficiency
4.1. The Virtual Suggested TEG Design
4.2. The Experimental Measurements’ to HVs Batteries
- effective power, kW; | |
- gasoline density, 0.76 g/cm3 (kg/Litre); | |
- ICE efficiency = ; | |
- gasoline calorific value, kJ/kg; | |
- ICE efficiency indicator = ; | |
- mechanical ICE efficiency = ; | |
- regular indicator pressure, kPa = ; | |
- regular effective pressure, kPa =; | |
- pressure of mechanical losses, kPa = ; | |
- ICE cycle = 4; | |
- ICE displacement (all cylinders), l.6; | |
- stoichiometric amount of gasoline -air mixture, 0.5119 kmol/kg; | |
n | - ICE rotation speed, rpm (; |
R | - universal gas constant, = 8.31 J/(mol ∙ K); |
T | - air temperature, 0.346 K; |
- ICE cylinder fill ratio = ; | |
- empirical coefficients depending on ICE type approximate to 0.17; | |
P | - air pressure, kPa; |
- excess air ratio = ; | |
- power utilization percentage, % = ; | |
empirical coefficients depending on ICE type, gasoline ICE are respectively. | |
—maximum effective ICE power, kW; | |
- average piston speed, m/s = ; | |
- mechanical loss factors in the engine; | |
- cylinder height (distance from TDC to BDC), m; |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritzman, L.P.; Malhorta, M.K. Operations Management Processes and Value Chains, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004; pp. 535–581. [Google Scholar]
- Scrosati, B.; Garche, J.; Tillmetz, W. (Eds.) Advances in Battery Technologies for Electric Vehicles, 1st ed.; Woodhead Publishing: Sawston, UK, 2015; eBook ISBN: 9781782423980; Hardcover ISBN: 9781782423775. [Google Scholar]
- Chian, T.Y.; Wei, W.; Ze, E.; Ren, L.; Ping, Y.; Bakar, N.A.; Faizal, M.; Sivakumar, S. A Review on Recent Progress of Batteries for Electric Vehicles. Int. J. Appl. Eng. Res. 2019, 14, 4441–4461. Available online: http://www.ripublication.com (accessed on 31 December 2019).
- Dai, Q.; Kelly, J.C.; Gaines, L.; Wang, M. Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications. Batteries 2019, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. An economic and environmental assessment on landfill gas to vehicle fuel conversion for waste hauling operations. Resour. Conserv. Recycl. 2018, 142, 155–166. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. J. Appl. Therm. Eng. 2019, 149, 192–212. [Google Scholar] [CrossRef]
- BU-214: Summary Table of Lead-based Batteries—Battery University. Available online: https://batteryuniversity.com/learn/article/bu_214_summary_table_of_lead_based_batteries (accessed on 8 November 2019).
- Indukala, M.P.; Bincy, M.M. A study on electric vehicle battery. Int. Res. J. Eng. Technol. 2019, 6, 309–314. [Google Scholar]
- Miao, Y.; Hynan, P.; von Jouanne, A.; Yokochi, A. Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies 2019, 12, 1074. [Google Scholar] [CrossRef] [Green Version]
- Characteristics of Lead Acid Batteries. Available online: http://pvcdrom.pveducation.org/BATTERY/charlead.htm (accessed on 4 November 2019).
- How to Prolong and Restore Lead-Acid Batteries—Battery University. Available online: https://batteryuniversity.com/learn/article/how_to_restore_and_prolong_lead_acid_batteries (accessed on 22 November 2019).
- McNutt, R.L., Jr.; Wimmer-Schweingruber, R.F.; Gruntman, M.; Krimigis, S.M.; Roelof, E.C.; Brandt, P.C.; Vernon, S.R.; Paul, M.V.; Lathrop, B.W.; Mehoke, D.S.; et al. Near-term interstellar probe: First step. Acta Astronaut. 2019, 162, 284–299. [Google Scholar] [CrossRef]
- Eldesoukey, A.; Hassan, H. 3D Study: Model of Thermoelectric Generator (TEG) Case Effect of Flow Regime on the TEG Performance. Energy Convers. Manag. 2019, 180, 231–239. [Google Scholar] [CrossRef]
- Sharma, A.; Saxena, A.; Dinkar, S.K.; Kumar, R.; Al-Sumaiti, A.S. Process Optimization of BioICE Production Using the Laplacian Harris Hawk Optimization (LHHO) Algorithm. Model. Simul. Eng. 2022, 2022, 6766045. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, Architectural Elements, and Future Directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Alyunov, A.; Vyatkina, O.; Smirnov, I.; Nemirovskiy, A.; Gracheva, E. Assessment of efficiency of diesel generators use in distributed energy industry. E3S Web Conf. 2020, 178, 01086. [Google Scholar] [CrossRef]
- Lao, L.; Li, Z.; Hou, S.; Xiao, B.; Guo, S.; Yang, Y. A Survey of IoT Applications in Blockchain Systems. ACM Comput. Surv. 2020, 53, 18. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.S.; Deb, S. Engineering Optimisation by Cuckoo Search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [Google Scholar] [CrossRef]
- Saka, M.; Hasançebi, O.; Geem, Z. Metaheuristics in structural optimization and discussions on harmony search algorithm. Swarm Evol. Comput. 2016, 28, 88–97. [Google Scholar] [CrossRef]
- Tsvyashchenko, A.; Fomicheva, L.; Brudanin, V.; Kochetov, O.; Salamatin, A.; Velichkov, A.; Wiertel, M.; Budzynski, M.; Sorokin, A.; Ryasny, G.; et al. The TDPAC study of the hyperfine interactions at 111Cd nuclei in RAl3 compounds synthesized under high pressure. Solid State Commun. 2007, 142, 664–669. [Google Scholar] [CrossRef]
- Hotta, S.K.; Sahoo, N.; Mohanty, K. Comparative assessment of a spark ignition engine fueled with gasoline and raw biogas. Renew. Energy 2019, 134, 1307–1319. [Google Scholar] [CrossRef]
- Massaguer, A.; Massaguer, E.; Comamala, M.; Pujol, T.; González, J.R.; Cardenas, M.D.; Carbonell, D.; Bueno, A.J. A method to assess the fuel economy of automotive thermoelectric generators. Appl. Energy 2018, 222, 42–58. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Zhu, Y.T.; Liao, X.; Horita, Z.; Langdon, T.G. Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Appl. Phys. Lett. 2006, 89, 121906. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.C.; Yadav, P.; Kumar, R.; Panda, S.K. Real-Time Implementation of a Harmony Search Algorithm-Based Clustering Protocol for Energy-Efficient Wireless Sensor Networks. IEEE Trans. Ind. Informatics 2014, 10, 774–783. [Google Scholar] [CrossRef]
- Wen, H.; Topping, T.D.; Isheim, D.; Seidman, D.N.; Lavernia, E.J. Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 2013, 61, 2769–2782. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems; Springer: Cham, Switzerland, 2017; pp. 85–113. [Google Scholar]
- Cao, Q.; Luan, W.; Wang, T. Performance enhancement of heat pipes assisted thermoelectric generator for automobile exhaust heat recovery. Appl. Therm. Eng. 2018, 130, 1472–1479. [Google Scholar] [CrossRef]
- Lan, S.; Yang, Z.; Chen, R.; Stobart, R. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl. Energy 2018, 210, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Gupta, S.; Khosravy, M.; Dey, N.; Joshi, N.; Crespo, R.G.; Patel, N. Economic IoT strategy: The future technology for health monitoring and diagnostic of agriculture vehicles. J. Intell. Manuf. 2020, 32, 1117–1128. [Google Scholar] [CrossRef]
- Parthasarathy, P.; Vivekanandan, S. A Typical IoT Architecture-Based Regular Monitoring of Arthritis Disease Using Time Wrapping Algorithm. Int. J. Comput. Appl. 2018, 42, 222–232. [Google Scholar] [CrossRef]
- Abed, A.M.; Seddek, L.F.; Elattar, S.; Gaafar, T.S. The digital twin model of vehicle containers to provide an ergonomic handling mechanism. South Fla. J. Dev. 2022, 3, 1971–1992. [Google Scholar] [CrossRef]
- Jagannathan, J.; Udaykumar, U. Predictive Modelling for Improving Healthcare Using IoT: Role of Predictive Models in Healthcare Using IoT. In Incorporating the Internet of Things in Healthcare Applications and Wearable Devices; Pankajavalli, P., Karthick, G., Eds.; IGI Global: Hershey, PA, USA, 2020; Chapter 15; pp. 243–254. [Google Scholar]
- Ateeq, K.; Altaf, S.; Aslam, M. Modeling and Bayesian Analysis of Time between the Breakdown of Electric Feeders. Model. Simul. Eng. 2022, 2022, 5830945. [Google Scholar] [CrossRef]
- Machura, P.; Li, Q. A critical review on wireless charging for electric vehicles. Renew. Sustain. Energy Rev. 2019, 104, 209–234. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Cano, Z.P.; Yu, A.; Lu, J.; Chen, Z. Automotive Li-Ion Batteries: Current Status and Future Perspectives. Electrochem. Energy Rev. 2019, 2, 1–28. [Google Scholar] [CrossRef]
- Alshahrani, S.; Khalid, M.; Almuhaini, M. Electric Vehicles Beyond Energy Storage and Modern Power Networks: Challenges and Applications. IEEE Access 2019, 7, 99031–99064. [Google Scholar] [CrossRef]
- Pang, D.; Zhang, A.; Wen, Z.; Wang, B.; Wang, J. Energy Conversion Efficiency of Thermoelectric Power Generators with Cylindrical Legs. J. Energy Resour. Technol. 2022, 144, 032104. [Google Scholar] [CrossRef]
- Goswami, R.; Das, R. Experimental Analysis of a Novel Solar Pond Driven Thermoelectric Energy System. ASME J. Energy Resour. Technol. 2020, 142, 121302. [Google Scholar] [CrossRef]
- Khalil, H.; Hassan, H. Enhancement of Waste Heat Recovery from Vertical Chimney via Thermoelectric Generators by Heat Spreader. Process Saf. Environ. Prot. 2020, 140, 314–329. [Google Scholar] [CrossRef]
- Admiral, F.; Jsseling, B.; Kolster, J.; Vander, V. Influence of Temperature on Corrosion Product Film Formation on CuNi19Fe in Low Temp. Range. Br Corr. J. 1986, 21, 33–43. [Google Scholar] [CrossRef]
- Richard, W.; Hertzberg, G. Deformation and Fracture Mechanics of Engineering Materials, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Li, C.; Negnevitsky, M.; Wang, X.; Yue, W.L.; Zou, X. Multi-criteria analysis of policies for implementing clean energy vehicles in China. Energy Policy 2019, 129, 826–840. [Google Scholar] [CrossRef]
- Qiao, Q.; Zhao, F.; Liu, Z.; He, X.; Hao, H. Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy 2019, 177, 222–233. [Google Scholar] [CrossRef]
- Scrosati, B.; Garche, J.; Sun, Y. Recycling lithium batteries. In Advances in Battery Technologies for Electric Vehicles; Woodhead Publishing: Sawston, UK, 2015. [Google Scholar] [CrossRef]
- Khalil, H.; Hassan, H. 3D Study of the Impact of Aspect Ratio and Tilt Angle on the Thermoelectric Generator Power for Waste Heat Recovery from a Chimney. J. Power Sources 2019, 418, 98–111. [Google Scholar] [CrossRef]
- Wen, Z.F.; Sun, Y.; Zhang, A.B.; Wang, B.L.; Wang, J.; Du, J.K. Performance Analysis of a Segmented Annular Thermoelectric Generator. J. Electron. Mater. 2020, 49, 4830–4842. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Ishak, A.; Alotaibi, A.M.; Elattar, S.; Pop, I.; Abed, A.M. Impact of an Induced Magnetic Field on the Stagnation-Point Flow of a Water-Based Graphene Oxide Nanoparticle over a Movable Surface with Homogeneous–Heterogeneous and Chemical Reactions. Magnetochemistry 2022, 8, 155. [Google Scholar] [CrossRef]
- Raza, A.; Khan, U.; Raizah, Z.; Eldin, S.M.; Alotaibi, A.M.; Elattar, S.; Abed, A.M. Numerical and Computational Analysis of Magnetohydrodynamics over an Inclined Plate Induced by Nanofluid with Newtonian Heating via Fractional Approach. Symmetry 2022, 14, 2412. [Google Scholar] [CrossRef]
- Raza, A.; Khan, U.; Eldin, S.M.; Alotaibi, A.M.; Elattar, S.; Prasannakumara, B.C.; Akkurt, N.; Abed, A.M. Significance of Free Convection Flow over an Oscillating Inclined Plate Induced by Nanofluid with Porous Medium: The Case of the Prabhakar Fractional Approach. Micromachines 2022, 13, 2019. [Google Scholar] [CrossRef]
- Hong, J.; Diabat, A.; Panicker, V.V.; Rajagopalan, S. A two-stage supply chain problem with fixed costs: An ant colony optimization approach. Int. J. Prod. Econ. 2018, 204, 214–226. [Google Scholar] [CrossRef]
- Ashour, M.; Elshaer, R.; Nawara, G. Ant Colony Approach for Optimizing a Multi-Stage Closed-Loop Supply Chain with a Fixed Transportation Charge. J. Adv. Manuf. Syst. 2021, 21, 473–796. [Google Scholar] [CrossRef]
- Abed, A.M.; Seddek, L.F.; AlArjani, A. Enhancing Two-Phase Supply Chain Network Distribution via three meta-heuristic Optimization Algorithms subsidized by Mathematical procedures. J. Adv. Manuf. Syst. 2022, 22, 1–32. [Google Scholar] [CrossRef]
- Yin, T.; He, Z. Analytical Model-Based Optimization of the Thermoelectric Cooler with Temperature-Dependent Materials under Different Operating Conditions. Appl. Energy 2021, 299, 117340. [Google Scholar] [CrossRef]
- Shen, Z.-G.; Wu, S.-Y.; Xiao, L.; Yin, G. Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer. Energy 2016, 95, 367–379. [Google Scholar] [CrossRef]
- Gan, Y.; Liu, C.; He, Z.; Li, H.; Liu, Z. Digital Camouflage Pattern Design Based on the Biased Random Walk. Model. Simul. Eng. 2022, 2022, 2986346. [Google Scholar] [CrossRef]
- Hossain, S.; Haque, M.M.; Kabir, M.H.; Gani, M.O.; Sarwardi, S. Complex Spatiotemporal Dynamics of a Harvested prey–predator Model with Crowley–Martin Response Function. Results Control. Optim. 2021, 5, 100059. [Google Scholar] [CrossRef]
- Rossetti, M.D.; Hill, R.R.; Johansson, B.; Dunkin, A.; Ingalls, R.G. Introduction To Simulation. In Proceedings of the 2009 Winter Simulation Conference, Austin, TX, USA, 13–16 December 2009. [Google Scholar]
- Kalantari, K.R.; Ebrahimnejad, A.; Motameni, H. A fuzzy neural network for web service selection aimed at dynamic software rejuvenation. Turk. J. Electr. Eng. Comput. Sci. 2020, 28, 2718–2734. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press, 2010; ISBN 978-1-905986-10-1. Available online: https://www.researchgate.net/publication/235979455_Nature-Inspired_Metaheuristic_Algorithms (accessed on 1 December 2022).
- Qiu, T.; Li, B.; Zhou, X.; Song, H.; Lee, I.; Lloret, J. A Novel Shortcut Addition Algorithm With Particle Swarm for Multisink Internet of Things. IEEE Trans. Ind. Inform. 2020, 16, 3566–3577. [Google Scholar] [CrossRef]
- Han, F.; Li, L.; Cai, W.; Li, C.; Deng, X.; Sutherland, J.W. Parameters optimization considering the trade-off between cutting power and MRR based on Linear Decreasing Particle Swarm Algorithm in milling. J. Clean. Prod. 2020, 262, 121388. [Google Scholar] [CrossRef]
- Ebrahimnejad, A.; Tavana, M.; Alrezaamiri, H. A novel artificial bee colony algorithm for shortest path problems with fuzzy arc weights. Measurement 2016, 93, 48–56. [Google Scholar] [CrossRef]
- Alrezaamiri, H.; Ebrahimnejad, A.; Motameni, H. Parallel multi-objective artificial bee colony algorithm for software requirement optimization. Requir. Eng. 2020, 25, 363–380. [Google Scholar] [CrossRef]
- Khosravy, M.; Gupta, N.; Patel, N.; Dey, N.; Nitta, N.; Babaguchi, N. Probabilistic Stone’s Blind Source Separation with application to channel estimation and multi-node identification in MIMO IoT green communication and multimedia systems. Comput. Commun. 2020, 157, 423–433. [Google Scholar] [CrossRef]
- Hosseinabadi, A.A.R.; Vahidi, J.; Balas, V.E.; Mirkamali, S.S. OVRP_GELS: Solving open vehicle routing problem using the gravitational emulation local search algorithm. Neural Comput. Appl. 2018, 29, 955–968. [Google Scholar] [CrossRef]
- Abed, A.M.; AlArjani, A. The Neural Network Classifier Works Efficiently on Searching in DQN Using the Autonomous Internet of Things Hybridized by the Metaheuristic Techniques to Reduce the EVs’ Service Scheduling Time. Energies 2022, 15, 6992. [Google Scholar] [CrossRef]
- Pang, D.; Zhang, A.; Wang, B.; Li, G. Theoretical Analysis of the Thermoelectric Generator Considering Surface to Surrounding Heat Convection and Contact Resistance. J. Electron. Mater. 2018, 48, 596–602. [Google Scholar] [CrossRef]
- Shen, Z.-G.; Tian, L.-L.; Liu, X. Automotive exhaust thermoelectric generators: Current status, challenges and future prospects. Energy Convers. Manag. 2019, 195, 1138–1173. [Google Scholar] [CrossRef]
- Araiz, M.; Casi, Á.; Catalán, L.; Martinez, A.; Astrain, D. Prospects of waste-heat recovery from a real industry using thermoelectric generators: Economic and power output analysis. Energy Convers. Manag. 2019, 205, 112376. [Google Scholar] [CrossRef]
- Mirhosseini, M.; Rezania, A.; Rosendahl, L.A. Power optimization and economic evaluation of thermoelectric waste heat recovery system around a rotary cement kiln. J. Clean. Prod. 2019, 232, 1321–1334. [Google Scholar] [CrossRef]
- Hahn, D.W.; Özişik, M.N. Heat Conduction, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Krivoshapov, S.I.; Nazarov, A.I.; Mysiura, M.I.; Marmut, I.A.; Zuyev, V.A.; Bezridnyi, V.V.; Pavlenko, V.N. Calculation methods for determining of fuel consumption per hour by transport vehicles. IOP Conf. Series: Mater. Sci. Eng. 2020, 977, 012004. [Google Scholar] [CrossRef]
- Eddine, A.N.; Chalet, D.; Faure, X.; Aixala, L.; Chessé, P. Optimization and characterization of a thermoelectric generator prototype for marine engine application. Energy 2018, 143, 682–695. [Google Scholar] [CrossRef]
- Vieira, F.; Soares, A.; Herbut, P.; Vismara, E.; Godyń, D.; dos Santos, A.; Lambertes, T.; Caetano, W. Spatio-Thermal Variability and Behaviour as Bio-Thermal Indicators of Heat Stress in Dairy Cows in a Compost Barn: A Case Study. Animals 2021, 11, 1197. [Google Scholar] [CrossRef] [PubMed]
Alloy Sample | Cu% | Zn | Sn | Ni | Fe | Mn | Al % | Cr % | As | Hv | k W/m K | σT (MPa) | σv (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(LiFePO4-Al) ≈ (Fe − Al) | ---- | Rem. | 1.2 | ---- | 0.006 | ---- | 4.65 | 20 | ---- | 85 | 13.5 | 310 | 105 |
(Cu-LiFePO4) ≈ (Fe − Cu) | 15 | Rem. | 0.001 | 0.004 | 0.7 | 0.001 | 1.9 | ---- | 0.012 | 102 | 16.07 | 340 | 180 |
(LiAlH4-Cu) ≈ (Al − Cu) | 77 | Rem. | ---- | 0.027 | 0.019 | 0.003 | 15 | ---- | 0.037 | 120 | 23.4 | 360 | 230 |
Parameter | Description | Parameter | Description |
---|---|---|---|
Dx, Dy, Dv | The coefficient of terminals’ cracks diffusion layer type 0.005 mm2 day−1 | β | The electrical conductivity in the alloy [Sm−1] |
ρ0 | The exhaust flow density [s. mm−3] | α | The Seebeck coefficient [V. K−1] |
p | The flow rate speed, mm3 s−1 | ∇ | The Hamiltonian operator, |
q | The dipole source, (0,1) | T | The temperature [K], 0.273 × 103 slits |
k | The thermal conductivity [W/m. K] | b | The # of ramifications appeared on the gasket slots 0: 1000 (212) |
Spatiotemporal Thermal Filming Parameters | |||
dsr | The distance between two cracks’ core on the leg surface [mm] | Li | The crack segment length among red spots on spatiotemporal images |
R0 | The radial distance from the gasket surface to picks imaging | Rcr | The radius of surrounding circle of terminals’ cracks form closed shape. |
r | The cracks growth rate per week (timespan between two sequential points), 3 weeks | hr | The radius of the hotspot on the gasket surface, |
d | The red crack diameter on the spatiotemporal image | Pi,j | The cracks’ location on the gasket legs’ surface |
Ø | The angle of the cracks line slope line with the x-axis | Swt(i) | The cracks’ center deviation regression to thermal conductor path according to alloy |
Qp | Intensity of the crack is the area of a circle and surrounds all ramifications for specific crack and has position Pi,j picked by spatiotemporal imaging, (Dark blue color, Green—Red) | ω | The relative area of closed perimeter of shared source for cracks by whole gasket area |
The digital simulator twin parameters | |||
cfd: | The cost of ICE fuel consumption ($0.808 l h−1) | Pw: | The power generated by ICE (KW) |
cσ: | Underutilization (dereliction) cost ($) | Qdf: | The ICE consumption, l. h−1 |
cd: | The electricity cost of kW·h−1 by a ICE, $/kW·h−1 | f: | Corrosion rate of alloy layer (mm.day−1) |
A | Cross-section area | V: | Crack path length speed (mm/day) |
tm: | Generator uptime running (wk.) | Ki∈(1,2,3): | Coefficients with constant values based on alloy type |
ts: | The red hotspot area imaging by STTF | The temperature losses from the hot gasket | |
dp,q: | Diameter of the hotspot crack leg (mm) | The temperature losses from the cold gasket | |
gs: | Slenderness ratio of gasket layer thickness tolerance ±0.14 mm | The thermoelectric material’s performance index And and the average temperature of thermoelectric terminal conductors. | |
Pmin: | The minimum absorption, kW | Tu: | The downtime due to replacement (hr.) |
Li: | Crack length mm → (oil spot) | E(ξ): | The exponential distribution with rate ξ |
λp, σp: | The heat and electrical conductivity for the leg has type p, respectively. | αh: | The Seebeck coefficient of the hot terminal |
T(r, z): | The temperature distribution in (r, z) plane | δ: | The standard deviation from average power, kW. |
Vopt | Optimum value of crack path speed (μm/wk.) | m: | Total TEG-ICE generator running hours |
I: | The electric current | zn: | Number of red spots on the gasket layer |
qpconv (a, z): | The heat flow density at the gasket surface of p-type leg = h[T(a, z) – T0] | ct: | The gasket damage cost ($) (head or intake and exhaust) before analysis expected |
Self ACO recruiting parameters | |||
The position where ants found food | ηij | The visibility provides valuable information | |
represents the area that has not been assigned | α, β, ρ | The pheromone trail evaporation rate, 4,1,0.8917 | |
Δτnl | Refers to the pheromone increment ≈ 0.0501 | EACij, EACjk | The electrothermal transformation failure cost |
nls(t) | The ants that are planned to move to collect food from different places | 𝜗 | A binary parameter (0,1) illustrates the importance of the period of cycle time |
Responses | |||
Pwatt | Generated electrical power of the generator by K-W/hr. | ||
Fuel | The fuel consumption per working week | ||
η | The efficiency of the proposed integration based on heat transfer | ||
Dir | The diffusion rate over time per month for each micrometer length |
Parameters | Down | Up | |
---|---|---|---|
Neuron number | 2 | 17 | |
Learning rate | 0.012 | 0.39 | |
Training epoch | 210 | 2550 | |
Momentum constant | 0.11 | 0.95 | |
Number of training runs | 3 | 7 |
A Fixed-Cost $ | Avg. Fuel Cost $+Variable_Cost | Avg. Fuel Cost $+Variable_Cost |
---|---|---|
Whole setup experiment parameters | From gasket 1 to 23 | From gasket 24 to 45 |
(30–50) Avg. variable-cost | 0.808 + (10:30) | 0.0808 + (10:50) |
Number of Gasket /Day | Total Cost f(Z) | RPD % | Number of Gasket /day | Total Cost f(Z) | RPD % | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LINGO | Mat-ACO | STTF-NN-ACO | Mat-ACO | STTF-NN-ACO | LINGO | Mat-ACO | STTF-NN-ACO | Mat-ACO | STTF-NN-ACO | ||
1 | 128,524 | 128,524 | 120,812.56 | 0.00% | 6.00% | 24 | 160,355 | 149,618 | 101,590.622 | −6.70% | 36.65% |
2 | 114,997 | 114,999 | 104,649.09 | 0.00% | 9.00% | 25 | 137,353 | 137,292 | 106,950.468 | −0.04% | 22.13% |
3 | 150,646 | 150,647 | 132,569.36 | 0.00% | 12.00% | 26 | 129,044 | 140,546 | 109,485.334 | 8.91% | 15.16% |
4 | 130,997 | 131,006 | 123,145.64 | 0.01% | 5.99% | 27 | 135,362 | 160,355 | 124,916.545 | 18.46% | 7.72% |
5 | 121,825 | 123,098 | 113,250.16 | 1.04% | 7.04% | 28 | 101,255 | 137,360 | 111,536.32 | 35.66% | −10.15% |
6 | 115,001 | 115,005 | 108,104.7 | 0.00% | 6.00% | 29 | 144,241 | 129,051 | 109,951.452 | −10.53% | 23.77% |
7 | 158,396 | 158,359 | 148,857.46 | −0.02% | 6.02% | 30 | 142,535 | 135,369 | 109,919.628 | −5.03% | 22.88% |
8 | 157,268 | 158,439 | 141,010.71 | 0.74% | 10.34% | 31 | 101,177 | 101,262 | 81,110.862 | 0.08% | 19.83% |
9 | 142,211 | 142,220 | 129,420.2 | 0.01% | 8.99% | 32 | 143,779 | 144,051 | 113,656.239 | 0.19% | 20.95% |
10 | 127,857 | 127,877 | 112,915.39 | 0.02% | 11.69% | 33 | 142,535 | 143,014 | 99,394.73 | 0.34% | 30.27% |
11 | 122,273 | 122,124 | 100,752.3 | -0.12% | 17.60% | 34 | 132,535 | 132,842 | 91,660.98 | 0.23% | 30.84% |
12 | 139,617 | 139,630 | 131,252.2 | 0.01% | 5.99% | 35 | 130,535 | 131,341 | 94,959.543 | 0.62% | 27.25% |
13 | 138,248 | 138,264 | 124,299.33 | 0.01% | 10.09% | 36 | 131,535 | 132,044 | 102,730.232 | 0.39% | 21.90% |
14 | 150,085 | 150,086 | 136,578.26 | 0.00% | 9.00% | 37 | 177,854 | 178,113 | 131,447.394 | 0.15% | 26.09% |
15 | 118,701 | 118,713 | 107,316.55 | 0.01% | 9.59% | 38 | 209,060 | 209,839 | 128,001.79 | 0.37% | 38.77% |
16 | 134,079 | 119,207 | 103,710.09 | −11.09% | 22.65% | 39 | 167,758 | 168,004 | 104,162.48 | 0.15% | 37.91% |
17 | 157,904 | 118,712 | 104,466.56 | −24.82% | 33.84% | 40 | 179,626 | 179,907 | 105,965.223 | 0.16% | 41.01% |
18 | 168,949 | 117,311 | 106,166.45 | −30.56% | 37.16% | 41 | 202,973 | 203,680 | 106,524.64 | 0.35% | 47.52% |
19 | 155,656 | 134,093 | 110,894.91 | −13.85% | 28.76% | 42 | 166,785 | 168,884 | 89,508.52 | 1.26% | 46.33% |
20 | 170,284 | 157,921 | 153,499.21 | −7.26% | 9.86% | 43 | 182,584 | 185,931 | 106,166.601 | 1.83% | 41.85% |
21 | 149,618 | 168,976 | 151,571.47 | 12.94% | −1.31% | 44 | 154,217 | 154,540 | 92,414.92 | 0.21% | 40.07% |
22 | 137,285 | 155,663 | 146,323.22 | 13.39% | −6.58% | 45 | 179,461 | 180,016 | 104,949.328 | 0.31% | 41.52% |
23 | 140,544 | 170,291 | 149,685.78 | 21.17% | −6.50% |
Working Hr. | Optimization Prediction Algorithms | Generated Power Per Hour | number of Terminals’ Cracks | Fuel Consumed Per Week | Working Weeks | : Costs Per Week | Equation (4) Output | Cracks’ Position Deviation | Cracks’ Intensity mm2 | η |
---|---|---|---|---|---|---|---|---|---|---|
Native TEG | 132 KW | 216 | 160 Liter | 23 weeks | ------- | ------- | 9 | 77% | ||
Controlling the significant parameters | 148 KW | 142 | 112 Liter | 31 weeks | Along 23 weeks | ------- | 6 | 81% | ||
Optimization | +12.15% | −1.33% | −1.83% | +2.52% | −2.09% | ------- | 1.32% | −3.11% | +2.21% | |
24–3360 | STTF-ACO-NN | 96.72% | 0.42% | 1.03% | 1.06% | 1.04% | 1.0 | 0.16% | 0.16% | 99.84% |
Mat-ACO | 88.40% | 0.90% | 2.50% | 2.20% | 2.30% | 1.5 | 0.96% | 2.43% | 98.30% | |
3361–5184 | STTF-ACO-NN | 97.50% | 0.45% | 1.06% | 1.09% | 1.07% | 1.6 | 0.17% | 0.17% | 99.83% |
Mat-ACO | 89.25% | 1.00% | 2.50% | 1.20% | 2.40% | 2.1 | 0.92% | 2.34% | 98.37% | |
5185–6241 | STTF-ACO-NN | 99.06% | 0.48% | 1.09% | 1.12% | 1.10% | 2.5 | 0.18% | 0.18% | 99.82% |
Mat-ACO | 91.29% | 1.10% | 3.50% | 1.20% | 2.40% | 1.6 | 0.92% | 2.34% | 98.37% | |
The Results | 165.982 | 92.544 | 35.989 | 1.32% | 4 | 87.81% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abed, A.M.; Seddek, L.F.; Elattar, S. Building a Digital Twin Simulator Checking the Effectiveness of TEG-ICE Integration in Reducing Fuel Consumption Using Spatiotemporal Thermal Filming Handled by Neural Network Technique. Processes 2022, 10, 2701. https://doi.org/10.3390/pr10122701
Abed AM, Seddek LF, Elattar S. Building a Digital Twin Simulator Checking the Effectiveness of TEG-ICE Integration in Reducing Fuel Consumption Using Spatiotemporal Thermal Filming Handled by Neural Network Technique. Processes. 2022; 10(12):2701. https://doi.org/10.3390/pr10122701
Chicago/Turabian StyleAbed, Ahmed M., Laila F. Seddek, and Samia Elattar. 2022. "Building a Digital Twin Simulator Checking the Effectiveness of TEG-ICE Integration in Reducing Fuel Consumption Using Spatiotemporal Thermal Filming Handled by Neural Network Technique" Processes 10, no. 12: 2701. https://doi.org/10.3390/pr10122701
APA StyleAbed, A. M., Seddek, L. F., & Elattar, S. (2022). Building a Digital Twin Simulator Checking the Effectiveness of TEG-ICE Integration in Reducing Fuel Consumption Using Spatiotemporal Thermal Filming Handled by Neural Network Technique. Processes, 10(12), 2701. https://doi.org/10.3390/pr10122701