Synthesis and Characterization of Nanoformulation of the Broad-Spectrum Enzyme Inhibitor Mancozeb by Polyethylene Glycol Capping and Its Dissipation Kinetics in Water Using TiO2 Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment Details
2.2. Reagents and Chemicals
3. Experimental
3.1. Preparation of TiO2 Nanoparticles
3.2. Preparation of 25 mm EDTA Stock Solution (Diluent)
3.3. Preparation of 100 mM Potassium Dihydrogen Orthophosphate Solution Stock
3.4. Preparation of 1,2 Benzene Dithiol Solution Stock
3.5. Preparation of Mancozeb Standard Stock Solution
3.6. Effect of Catalyst Amount
3.7. Photolysis and Photocatalytic Studies
3.8. Sampling Data
3.9. Chromatographic Separation Parameters
3.10. Characterization
4. Results and Discussion
4.1. Characterization of TiO2 NPs and Mancozeb Nanoformulation
4.1.1. XRD Analysis of TiO2
4.1.2. FTIR Analysis TiO2 NPs and Mancozeb Nanoformulation
4.1.3. SEM Analysis of TiO2 NPs and Mancozeb Nanoformulation
4.1.4. TEM Analysis of TiO2 NPs and Mancozeb Nanoformulation
4.2. Effect of Catalyst Amount
4.3. Photolysis and Photocatalytic Studies
- : Pesticide concentration at times zero
- : Pesticide concentration at times t,
- k: The rate constant.
- : Half-life. Kinetic parameters, such as rate constant (k)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anitha, S.R.; Savitha, G. Impact of Mancozeb Stress on Seedling growth, Seed Germination, Chlorophyll and Phenolic Contents of Rice Cultivars. Int. J. Sci. Res. 2015, 4, 292–296. [Google Scholar]
- Sayed, R.; Hussein, O.E.; Omran, A.A. Method optimization and validation for the determination of mancozeb in chamomile by modified QuEChERS and liquid chromatography–tandem mass spectrometry. J. Food Compos. Anal. 2022, 111, 104646. [Google Scholar] [CrossRef]
- Venugopal, N.V.S.; Sainadh, N.V.S. Novel polymeric nanoformulation of mancozeb—An eco-friendly nanomaterial. Int. J. Nanosci. 2016, 15, 1650016. [Google Scholar] [CrossRef] [Green Version]
- Marinas, M.; Sa, E.; Rojas, M.M.; Moalem, M.; Urbano, F.J.; Guillou, C.; Rallo, L. A nuclear magnetic resonance (1H and 13C) and isotope ratio mass spectrometry (δ13C, δ2H and δ18O) study of Andalusian olive oils. Rapid Commun. Mass Spectrom. 2010, 24, 1457–1466. [Google Scholar]
- Huang, Z.; Wang, P.; Pu, Z.; Lu, L.; Chen, G.; Hu, X.; Fayyaz, A.; Gai, Y. Effects of mancozeb on citrus rhizosphere bacterial community. Microb. Pathog. 2021, 154, 104845. [Google Scholar] [CrossRef]
- Shim, Y.-S.; Yoon, W.-J.; Hwang, J.-B.; Park, H.-J.; Seo, D.; Ha, J. Rapid method for the determination of 14 isoflavones in food using UHPLC coupled to photo diode array detection. Food Chem. 2015, 187, 391–397. [Google Scholar] [CrossRef]
- Gullino, M.L.; Tinivella, F.; Garibaldi, A.; Kemmitt, G.M.; Bacci, L.; Sheppard, B. Mancozeb: Past, present, and future. Plant Dis. 2010, 94, 1076–1087. [Google Scholar] [CrossRef] [Green Version]
- Nikunj, P.; Purvi, D.; Niti, P.; Anamika, J.; Gautam, H.K. Agronanotechnology for plant fungal disease management: A review. Int. J. Curr. Micobl. App. Sci. 2014, 3, 71–84. [Google Scholar]
- Wang, X.; Peng, F.; Cheng, C.; Chen, L.; Shi, X.; Gao, X.; Li, J. Synergistic antifungal activity of graphene oxide and fungicides against Fusarium head blight in vitro and in vivo. Nanomaterials 2021, 11, 2393. [Google Scholar] [CrossRef]
- Court, R. Agency Technical Report on the Classification and Labelling of Mancozeb (ISO); Manganese Ethylenebis(dithiocarbamate) (Polymeric) Complex with Zinc Salt; CAS Number: 8018-01-7; Health and Safety Executive Chemicals Regulation Division: Bootle, UK, 2021. [Google Scholar]
- Debelder, T. Mancozeb Non-Renewal and MRL Review (Voluntary Report); E42020-0099; USDA, United States Department of Agricultural Service: Washington, DC, USA, 2020.
- ANZG A Toxicant default guideline values for aquatic ecosystem protection—Metolachlor in freshwater (Technical brief). In Australian and New Zealand Guidelines for Fresh and Marine Water Quality; Australian Government Department of Agriculture, Water and the Environment: Canberra, Australia, 2020.
- Khay, S.; Abd El-Aty, A.; Choi, J.-H.; Shin, E.-H.; Shin, H.-C.; Kim, J.-S.; Chang, B.-J.; Lee, C.-H.; Shin, S.-C.; Jeong, J.Y.; et al. Simultaneous determination of pyrethroids from pesticide residues in porcine muscle and pasteurized milk using GC. J. Sep. Sci. 2009, 32, 244–251. [Google Scholar] [CrossRef]
- Kakitani, A.; Yoshioka, T.; Nagatomi, Y.; Harayama, K. A rapid and sensitive analysis of dithiocarbamate fungicides using modified QuEChERS method and liquid chromatography–tandem mass spectrometry. J. Pestic. Sci. 2017, 42, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gohary, A.A.; Moustapha, M.; Hassan, A. Method validation of dithiocarbamates residues on some Egyptian commodities using Gc-Mass instrument. J. Plant Prot. Pathol. 2011, 2, 59–65. [Google Scholar] [CrossRef]
- Kumar, R.; Duhan, J.S.; Manuja, A.; Kaur, P.; Kumar, B.; Sadh, P.K. Toxicity Assessment and Control of Early Blight and Stem Rot of Solanum tuberosum L. by Mancozeb-Loaded Chitosan–Gum Acacia Nanocomposites. J. Xenobiot. 2022, 12, 74–90. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Ravi, P.E. Electron ionization gas chromatography–mass spectrometric determination of residues of thirteen pyrethroid insecticides in whole blood. J. Chromatogr. B 2004, 802, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Mujawar, S.; Utture, S.C.; Fonseca, E.; Matarrita, J.; Banerjee, K. Validation of a GC–MS method for the estimation of dithiocarbamate fungicide residues and safety evaluation of mancozeb in fruits and vegetables. Food Chem. 2014, 150, 175–181. [Google Scholar] [CrossRef]
- Saha, N.C.; Giri, S.K.; Chatterjee, N.; Biswas, S.J.; Bej, S. Acute toxic effects of mancozeb to fish Oreochromis mossambicus (WKH Peters, 1852) and their behaviour. Int. J. Adv. Res. Biol. Sci. 2016, 3, 40–44. [Google Scholar]
- Debbarh, I.; Titier, K.; Deridet, E.; Moore, N. Identification and quantitation by high-performance liquid chromatography of mancozeb following derivatization by 1, 2-benzenedithiol. J. Anal. Toxicol. 2004, 28, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Kaye, E.; Nyombi, A.; Mutambuze, I.L.; Muwesa, R. Mancozeb residue on tomatoes in Central Uganda. J. Health Pollut. 2015, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Swarupa, C.; Dhananjayulu, M.S.P.M.; Sreedhar, N. Electrochemical determination and reduction behaviour of mancozeb at glassy carbon electrode modified with polyaniline based nanosensors. J. Health Pollut. 2013, 4, 1234–1241. [Google Scholar]
- Verma, V.; Al-Dossari, M.; Singh, J.; Rawat, M.; Kordy, M.G.; Shaban, M. A Review on Green Synthesis of TiO2 NPs: Photocatalysis and Antimicrobial Applications. Polymers 2022, 14, 1444. [Google Scholar] [CrossRef]
- Nyamukamba, P.; Okoh, O.; Mungondori, H.; Taziwa, R.; Zinya, S. Synthetic Methods for Titanium Dioxide Nanoparticles: A Review. In Titanium Dioxide—Material for a Sustainable Environment; Yang, D., Ed.; IntechOpen: London, UK, 2018; pp. 152–175. [Google Scholar]
- Zoccal, J.V.M.; Arouca, F.O.; Gonçalves, J.A.S. Synthesis and Characterization of TiO2 Nanoparticles by the Method Pechini. Mater. Sci. Forum (MSF) 2010, 660–661, 385–390. [Google Scholar] [CrossRef]
- Bagheri, S.; Shameli, K.; Abd Hamid, S.B. Synthesis and characterization of anatase titanium dioxide nanoparticles using egg white solution via Sol-Gel method. J. Chem. 2013, 2013, 848205. [Google Scholar] [CrossRef] [Green Version]
- Irshad, M.A.; Nawaz, R.; ur Rehman, M.Z.; Adrees, M.; Rizwan, M.; Ali, S.; Ahmad, S.; Tasleem, S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicol. Environ. Saf. 2021, 212, 111978. [Google Scholar] [CrossRef] [PubMed]
- Marien, C.B.D.; Marchal, C.; Koch, A.; Robert, D.; Drogui, P. Sol-gel synthesis of TiO2 nanoparticles: Effect of Pluronic P123 on particle’s morphology and photocatalytic degradation of paraquat. Environ. Sci. Pollut. Res. 2017, 24, 12582–12588. [Google Scholar] [CrossRef]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Islam, J.B.; Furukawa, M.; Tateishi, I.; Katsumata, H.; Kaneco, S. Photocatalytic degradation of a typical agricultural chemical: Metalaxyl in water using TiO2 under solar irradiation. SN Appl. Sci. 2020, 2, 925. [Google Scholar] [CrossRef]
- Memarizadeh, N.; Ghadamyari, M.; Talebi, K.; Torabi, E.; Adeli, M.; Jalalipour, R. Residues and dissipation kinetics of two imidacloprid nanoformulations on bean (Phaseolus vulgaris L.) under field conditions. Pollution 2019, 5, 871–878. [Google Scholar]
- Chen, J.-Q.; Wang, D.; Zhu, M.-X.; Gao, C.-J. Photocatalytic degradation of dimethoate using nanosized TiO2 powder. Desalination 2007, 207, 87–94. [Google Scholar] [CrossRef]
- Nageswara Rao, T.; Prashanthi, Y.; Ahmed, F.; Kumar, S.; Arshi, N.; Rajasekhar Reddy, G.; Manohra Naidu, T. Photocatalytic applications of Fe–Ag Co-doped TiO2 nanoparticles in removal of flumioxazin pesticide residues in water. Front. Nanotechnol. 2021, 3, 652364. [Google Scholar] [CrossRef]
- Elsayed, E.; Hassan, H.; Abd El Raof, A.E.; Salman, S. Coupling Between Laser Irradiation and TiO2 Nanoparticles on Efficient Decontamination of Some Pesticide’s Residues from Orange and Tomato Puree. Egypt. J. Chem. 2021, 64, 971–979. [Google Scholar]
- Loccufier, E.; Deventer, K.; Manhaeghe, D.; Van Hulle, S.W.; D’hooge, D.R.; De Buysser, K.; De Clerck, K. Degradation kinetics of isoproturon and its subsequent products in contact with TiO2 functionalized silica nanofibers. Chem. Eng. J. 2020, 387, 124143. [Google Scholar] [CrossRef]
- Nageswara Rao, T.; Hussain, I.; Anwar, M.S.; Koo, B.H. Photocatalytic degradation kinetics of pesticide residues in different pH waters using metal-doped metal oxide nanoparticles. EQA-Int. J. Environ. Qual. 2020, 36, 37–44. [Google Scholar]
Nanoformulation Residues (mg/L) | ||||||
---|---|---|---|---|---|---|
Occasion (Hours) | 0 g/L Catalyst | 0.01 g/L Catalyst | 0.05 g/L Catalyst | 0.10 g/L Catalyst | 0. 20 g/L Catalyst | 0.50 g/L Catalyst |
0.4 | 0.999 | 0.947 | 0.932 | 0.923 | 0.919 | 0.916 |
3 | 0.995 | 0.871 | 0.732 | 0.661 | 0.655 | 0.647 |
12 | 0.992 | 0.595 | 0.417 | 0.332 | 0.39 | 0.43 |
24 | 0.990 | 0.356 | 0.215 | 0.118 | 0.104 | 0.101 |
36 | 0.989 | 0.196 | 0.107 | ND | ND | ND |
Occasion (Days) | Residue Level (mg/L) | Log | Kinetic Parameters | |
0 | 0.998 | −0.0009 | ||
5 | 0.659 | −0.1811 | Slope | −0.039 |
10 | 0.521 | −0.2832 | Half-life (Days) | 7.77 |
15 | 0.361 | −0.4425 | Intercept | 0.038 |
20 | 0.145 | −0.8386 | CC | 0.966 |
30 | ND | ND |
Occasion (Days) | Residue Level (mg/L) | Log | Kinetic Parameters | |
0.4 | 0.936 | −0.0287 | ||
3 | 0.649 | −0.1878 | Slope | −0.036 |
6 | 0.425 | −0.3716 | Half-life (Hours) | 8.30 |
12 | 0.337 | −0.4724 | Intercept | −0.070 |
24 | 0.116 | −0.9355 | CC | 0.988 |
36 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daqa, W.M.; Alshoaibi, A.; Ahmed, F.; Rao, T.N. Synthesis and Characterization of Nanoformulation of the Broad-Spectrum Enzyme Inhibitor Mancozeb by Polyethylene Glycol Capping and Its Dissipation Kinetics in Water Using TiO2 Nanoparticles. Processes 2022, 10, 2733. https://doi.org/10.3390/pr10122733
Daqa WM, Alshoaibi A, Ahmed F, Rao TN. Synthesis and Characterization of Nanoformulation of the Broad-Spectrum Enzyme Inhibitor Mancozeb by Polyethylene Glycol Capping and Its Dissipation Kinetics in Water Using TiO2 Nanoparticles. Processes. 2022; 10(12):2733. https://doi.org/10.3390/pr10122733
Chicago/Turabian StyleDaqa, Wafa Mahmoud, Adil Alshoaibi, Faheem Ahmed, and Tentu Nageswara Rao. 2022. "Synthesis and Characterization of Nanoformulation of the Broad-Spectrum Enzyme Inhibitor Mancozeb by Polyethylene Glycol Capping and Its Dissipation Kinetics in Water Using TiO2 Nanoparticles" Processes 10, no. 12: 2733. https://doi.org/10.3390/pr10122733
APA StyleDaqa, W. M., Alshoaibi, A., Ahmed, F., & Rao, T. N. (2022). Synthesis and Characterization of Nanoformulation of the Broad-Spectrum Enzyme Inhibitor Mancozeb by Polyethylene Glycol Capping and Its Dissipation Kinetics in Water Using TiO2 Nanoparticles. Processes, 10(12), 2733. https://doi.org/10.3390/pr10122733