Analysis of Laser Cutting Process for Different Diagonal Material Shapes
Abstract
:1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lind, J.; Fetzer, F.; Blazquez-Sanchez, D.; Weidensdörfer, J.; Weber, R.; Graf, T. Geometry and absorptance of the cutting fronts during laser beam cutting. Laser Applications. 2020, 32, 032015. [Google Scholar] [CrossRef]
- Haddadi, E.; Moradi, M.; Karimzad Ghavidel, A.; Karimzad Ghavidel, A.; Meiabadi, S. Experimental and parametric evaluation of cut quality characteristics in CO2 laser cutting of polystyrene. Optik 2019, 184, 103–114. [Google Scholar] [CrossRef]
- Chau, M.Q. An overview study on the laser technology and applications in the mechanical and machine manufacturing industry. JMERD 2019, 42, 16–20. [Google Scholar] [CrossRef]
- Riveiro, A.; Quintero, F.; Lusquiñosb, F.; Val, J.; Comesaña, R.; Boutinguiza, M.; Poub, J. Experimental study on the CO2 laser cutting of carbon fiber reinforced plastic composite. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1400–1409. [Google Scholar] [CrossRef]
- Tamura, K.; Ishigami, R.; Yamagishi, R. Laser cutting of thick steel plates and simulated steel components using a 30-kW fiber laser. J. Nucl. Sci. Technol. 2016, 53, 916–920. [Google Scholar] [CrossRef]
- Naresh; Khatak, P. Laser cutting technique: A literature review. Materials Today. 2022, 56, 2484–2489. [Google Scholar] [CrossRef]
- Seo, Y.; Pyo, S.; Lee, D. Experimental investigation of laser cutting on cement composites. Welding and Joining. 2019, 37, 226–230. [Google Scholar] [CrossRef]
- Li, M.; Li, S.; Yang, X.; Zhang, Y.; Liang, Z. Fiber laser cutting of CFRP laminates with single- and multi-pass strategy: A feasibility study. Opt. Laser Technol. 2018, 107, 443–453. [Google Scholar] [CrossRef]
- Tzanakakis, E.-G.C.; Skoulas, E.; Pepelassi, E.; Koidis, P.; Tzoutzas, I.G. The use of lasers in dental materials: A review. Materials 2021, 14, 3370. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Yang, R.; Liu, T.; Yan, Y. Analysis of kerf quality on ultrafast laser cutting of anode material for lithium-ion battery. Opt. Lasers Eng. 2019, 118, 14–21. [Google Scholar] [CrossRef]
- Fushimi, T.; Kitazawa, M.; Endo, M.; Yamaguchi, S.; Nanri, K.; Fujioka, T. Parametric studies on improved laser cutting performance of magnesium alloy with two flow nozzles. Jpn. J. Appl. Phys. 2004, 43, 5347–5351. [Google Scholar] [CrossRef]
- Riveiro, A.; Quintero, F.; Boutinguiza, M.; Val, J.D.; Comesaña, R.; Lusquiños, F.; Pou, J. Laser cutting: A review on the influence of assist gas. Materials 2019, 12, 157. [Google Scholar] [CrossRef] [Green Version]
- Darwish, M.; Mrňa, L.; Orazi, L.; Reggiani, B. Numerical modeling and Schlieren visualization of the gas-assisted laser cutting under various operating stagnation pressures. Int. J. Heat Mass Transf. 2020, 147, 118965. [Google Scholar] [CrossRef]
- Orazi, L.; Darwish, M.; Reggiani, B. Investigation on the inert gas-assisted laser cutting performances and quality using supersonic nozzles. Metals 2021, 9, 1257. [Google Scholar] [CrossRef] [Green Version]
- Darwish, M.; Orazi, L.; Reggiani, B. Numerical analysis of the gas-assisted laser cutting flow from various supersonic nozzles. J. Manuf. Process. 2020, 56, 382–389. [Google Scholar] [CrossRef]
- Man, H.C.; Duan, J.; Yue, T.M. Analysis of the dynamic characteristics of gas flow inside a laser cut kerf under high cut-assist gas pressure. J. Phys. D 1999, 32, 1469–1477. [Google Scholar] [CrossRef]
- Tuladhar, U.; Ahn, S.-H.; Cho, D.-W.; Kim, D.-H.; Ahn, S.; Kim, S.; Bae, S.-H.; Park, T.-K. Analysis of gas flow dynamics in thermal cut kerf using a numerical and experimental approach for nozzle selection. Processes 2022, 10, 1951. [Google Scholar] [CrossRef]
- Christophe, J.; Planquart, P. Diagnostics for laser cutting efficiency using computational fluid dynamics. Procedia Manuf. 2019, 29, 375–382. [Google Scholar] [CrossRef]
- Kovalev, O.B.; Yudin, P.V.; Zaitsev, A.V. Modeling of flow separation of assist gas as applied to laser cutting of thick sheet metal. Appl. Math. Model. 2009, 33, 3730–3745. [Google Scholar] [CrossRef]
- Madić, M.; Petrović, G.; Petković, D.; Antucheviciene, J.; Marinković, D. Application of a Robust Decision-Making Rule for Comprehensive Assessment of Laser Cutting Conditions and Performance. Machines 2022, 10, 153. [Google Scholar] [CrossRef]
- Tuladhar, U.; Ahn, S.-H.; Cho, D.-W.; Kim, D.-H.; Ahn, S.; Kim, S.; Bae, S.-H.; Park, T.-K. Numerical modeling of an impinging jet flow inside a thermal cut kerf using CFD and schlieren method. Appl. Sci. 2022, 12, 9557. [Google Scholar] [CrossRef]
- Cho, D.-W.; Choi, J.; Lee, S.; Shin, D. Analysis of gas flow behavior in the laser cutting process using the schlieren method and image processing. J. Weld. Join. 2020, 38, 569–575. [Google Scholar] [CrossRef]
- Kim, D.; Cho, D.; Jo, Y.; Suh, J.; Choi, K.; Kim, R.; Ahn, S. Characteristic Analysis of Double Arcing on the Top Surface of STS304 in Plasma Arc Piercing. J. Weld. Join. 2021, 39, 427–434. [Google Scholar] [CrossRef]
- Sim, A.; Chun, E.; Cho, D.; Chun, E.-J.; Cho, D.-W. Numerical Simulation of Surface Softening Behavior for Laser Heat Treated Cu-Bearing Medium Carbon Steel. Met. Mater. Int. 2020, 26, 1207–1217. [Google Scholar] [CrossRef]
- Kong, F.; Santhanakrishnan, S.; Lin, D.; Kovacevic, R. Modeling of temperature field and grain growth of a dual phase steel DP980 in direct diode laser heat treatment. J. Mater. Process. Technol. 2009, 209, 5596–6003. [Google Scholar] [CrossRef]
Fe | C | Si | Mn | P | S | Cr | Ni | Mo | N | Co | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
composition | 71.636 | 0.016 | 0.37 | 1.50 | 0.021 | 0.003 | 18.24 | 8.12 | 0.01 | 0.044 | 0.03 | 0.01 |
Case | L1 (mm) | L2 (mm) | D1 (mm) | D2 (mm) | D3 (mm) | Cutting Speed (mm/s) |
---|---|---|---|---|---|---|
Case1 | 50 | 50 | 100 | 100 | 1 | 2.3 |
Case2 | 10 | 50 | 100 | 60 | 1 | 2.9 |
Case3 | 20 | 50 | 100 | 60 | 1 | 2.9 |
Case4 | 30 | 50 | 100 | 60 | 1 | 2.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.; Kim, R.; Song, D.; Cho, D.-W.; Suh, J.; Kim, S.; Ahn, S.-H. Analysis of Laser Cutting Process for Different Diagonal Material Shapes. Processes 2022, 10, 2743. https://doi.org/10.3390/pr10122743
Choi J, Kim R, Song D, Cho D-W, Suh J, Kim S, Ahn S-H. Analysis of Laser Cutting Process for Different Diagonal Material Shapes. Processes. 2022; 10(12):2743. https://doi.org/10.3390/pr10122743
Chicago/Turabian StyleChoi, Jungsoo, Ryoonhan Kim, Danbi Song, Dae-Won Cho, Jeong Suh, Seonmin Kim, and Sang-Hyun Ahn. 2022. "Analysis of Laser Cutting Process for Different Diagonal Material Shapes" Processes 10, no. 12: 2743. https://doi.org/10.3390/pr10122743
APA StyleChoi, J., Kim, R., Song, D., Cho, D. -W., Suh, J., Kim, S., & Ahn, S. -H. (2022). Analysis of Laser Cutting Process for Different Diagonal Material Shapes. Processes, 10(12), 2743. https://doi.org/10.3390/pr10122743