Fault Feature Extraction Method of a Permanent Magnet Synchronous Motor Based on VAE-WGAN
Abstract
:1. Introduction
2. Related Works
2.1. Variational Auto-Encode Model
2.2. Improved Generative Adversarial Network
3. Methods
3.1. Design of Fault Feature Extraction Scheme Using DATA Expansion Method
- Preprocess the real data to avoid data missing and data imbalance caused by human factors.
- Set the coding model, set the number of network layers and the function of each layer.
- Set the generation/decoding model, set the number of network layers, and determine the convolution kernel of the convolutional neural network.
- Set the discriminant model, set the number of network layers, and select the optimal discriminant function as the classifier.
- Input motor fault data and extract real motor data characteristics: mean and variance.
- Restore the original data from the mean and variance to ensure that the output data has the same dimensions as the original data.
- Use two eigenvalues of mean and variance to measure the classification effect of the improved model, conduct a two-dimensional visualization analysis of the mean, quantify the classification effect, and use accuracy for comparison.
- The generated data and the original data of the improved model after training constitute the final data set of turn-to-turn short circuit fault of PMSM.
- The expanded data set is analyzed again for dimensionality reduction, and the data distribution at this time is compared with the real sample data distribution to verify the effectiveness of the expansion.
3.2. VAE-WGAN Model Structure
4. Experimental Analyses
4.1. Motor Fault Parameter Acquisition
- The feature learning ability of VAE network changes.
- Time domain correlation analysis of generated data.
- Validity analysis of samples generated after data expansion.
4.2. Effectiveness Analysis of VAE Classification
4.3. Time Domain Correlation Analysis of Generated Data
4.4. Validity Analysis of Data Generated by VAE-WGAN
4.5. Comparison of Feature Classification Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.W.; Qiao, X.; Zhang, N.; Feng, J.Y.; Wang, X.Q. Review of intelligent fault diagnosis for permanent magnet synchronous motors in electric vehicle. Adv. Mech. Eng. 2020, 12, 1687814020944323. [Google Scholar] [CrossRef]
- Yu, S.B.; Zhong, S.S.; Zhao, H.N.; Xia, P.P.; Guo, K. Calculation of Circumferential Modal Frequencies of Permanent Magnet Synchronous Motor. J. Harbin Inst. Technol. (New Ser.) 2019, 26, 81–91. [Google Scholar]
- Kong, Y.; Wang, T.Y.; Chu, F.L.; Feng, Z.P.; Lvan, S. Discriminative Dictionary Learning-Based Sparse Classification Framework for Data-Driven Machinery Fault Diagnosis. IEEE Sens. J. 2021, 21, 8117–8129. [Google Scholar] [CrossRef]
- Wu, G.Q.; Tao, Y.C.; Zeng, X. Data-driven transmission sensor fault diagnosis method. J. Tongji Univ. (Nat. Sci. Ed.) 2021, 49, 272–279. [Google Scholar]
- Lei, Y.G.; Jia, F.; Kong, D.T.; Lin, J.; Xing, S.B. Opportunities and Challenges of Mechanical Intelligent Fault Diagnosis under Big Data. J. Mech. Eng. 2018, 54, 94–104. [Google Scholar] [CrossRef]
- Baptista, M.; Sankararaman, S.; De, M.I.P.; Nascimento, C.; Prendinger, H.; Henriquesa, E.M.P. Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling. Comput. Ind. Eng. 2018, 115, 41–53. [Google Scholar] [CrossRef]
- Wang, K.F.; Gou, C.; Duan, Y.J.; Lin, Y.L.; Zheng, X.H.; Wang, F.Y. Research Progress and Prospects of Generative Adversarial Network GAN. Acta Autom. Sin. 2017, 43, 321–332. [Google Scholar]
- Yao, N.M.; Guo, Q.P.; Qiao, F.C.; Chen, H.; Wang, H.A. Robust facial expression recognition based on generative confrontation network. Acta Autom. Sin. 2018, 44, 865–877. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 2, 2672–2680. [Google Scholar]
- Liu, Y.F.; Zhou, Y.; Liu, X.; Dong, F.; Wang, C.; Wang, Z.H. Wasserstein GAN-Based Small-Sample Augmentation for New-Generation Artificial Intelligence: A Case Study of Cancer-Staging Data in Biology. Engineering 2019, 5, 156–163. [Google Scholar] [CrossRef]
- Yong, O.L.; Jo, J.; Hwang, J. Application of deep neural network and generative adversarial network to industrial maintenance: A case study of induction motor fault detection. In Proceedings of the 2017 IEEE International Conference on Big Data (Big Data), Boston, MA, USA, 11–14 December 2017; pp. 3248–3253. [Google Scholar]
- Li, Q.; Chen, L.; Shen, C.; Yang, B.R.; Zhu, Z.K. Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data. Meas. Sci. Technol. 2019, 30, 115–120. [Google Scholar] [CrossRef]
- Wang, S.X.; Chen, H.W.; Pan, Z.X.; Wang, J.M. Reconstruction method of missing data in power system measurement using improved generative adversarial network. Proc. Chin. Soc. Electr. Eng. 2019, 39, 56–64. [Google Scholar]
- Ding, Y.; Ma, L.; Ma, J.; Wang, C.; Lu, C. A generative adversarial network-based intelligent fault diagnosis method for rotating machinery under small sample size conditions. IEEE Access 2019, 7, 149736–149749. [Google Scholar] [CrossRef]
- Shao, S.Y.; Wang, P.; Yan, R.Q. Generative adversarial networks for data augmentation in machine fault diagnosis. Comput. Ind. 2019, 106, 85–93. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875. Available online: http://arxiv.org/pdf/1701.07875 (accessed on 24 November 2021).
- Arjovsky, M.; Bottou, L. Towards Principled Methods for Training Generative Adversarial Networks. arXiv 2017, arXiv:1701.04862. Available online: https://arxiv.org/abs/1701.04862 (accessed on 24 November 2021).
- Zhang, Z.L.; Li, Y.J.; Li, M.H.; Wei, H.F. Fault diagnosis method of permanent magnet synchronous motor based on deep learning. Comput. Appl. Softw. 2019, 36, 123–129. [Google Scholar]
- An, J.; Cho, S. Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2015, 2, 1–18. [Google Scholar]
Fault Feature | Correlation after Polynomial Fitting | Correlation after GAN | Correlation after WGAN |
---|---|---|---|
A phase current | 0.97317 | 0.9842 | 0.99174 |
B phase current | 0.89106 | 0.91009 | 0.986 |
Electromagnetic torque | 0.96258 | 0.98914 | 0.99556 |
Negative sequence current | 0.96086 | 0.99248 | 0.99939 |
Algorithm Model | Number of Samples | Hidden Layer | Accuracy |
---|---|---|---|
SVM-GAN | 5000 | 3 | 83.59% |
SVM-WGAN | 5000 | 3 | 89.18% |
VAE-GAN | 5000 | 3 | 92.70% |
VAE-WGAN | 5000 | 3 | 98.26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhan, L.; Xu, X.; Qiao, X.; Qian, F.; Luo, Q. Fault Feature Extraction Method of a Permanent Magnet Synchronous Motor Based on VAE-WGAN. Processes 2022, 10, 200. https://doi.org/10.3390/pr10020200
Zhan L, Xu X, Qiao X, Qian F, Luo Q. Fault Feature Extraction Method of a Permanent Magnet Synchronous Motor Based on VAE-WGAN. Processes. 2022; 10(2):200. https://doi.org/10.3390/pr10020200
Chicago/Turabian StyleZhan, Liu, Xiaowei Xu, Xue Qiao, Feng Qian, and Qiong Luo. 2022. "Fault Feature Extraction Method of a Permanent Magnet Synchronous Motor Based on VAE-WGAN" Processes 10, no. 2: 200. https://doi.org/10.3390/pr10020200
APA StyleZhan, L., Xu, X., Qiao, X., Qian, F., & Luo, Q. (2022). Fault Feature Extraction Method of a Permanent Magnet Synchronous Motor Based on VAE-WGAN. Processes, 10(2), 200. https://doi.org/10.3390/pr10020200