Effect of Soil Aggregate Separation Methods on the Occurrence Characteristics of Typical Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Soil Particle Size Fractionation
2.3. Inorganic Chloride Analysis
2.4. Heavy Metals Content Analysis
2.5. Ecological Risk Assessment of Soil Heavy Metals
3. Results and Discussion
3.1. Aggregate Distribution Analysis
3.2. Inorganic Chlorine Analysis in Soil Aggregates
3.3. Heavy Metals Analysis in Soil Aggregates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Yuan, X.L.; Ge, L.; Li, Q.; Li, Z.G.; Wang, L.; Liu, Y. Rhizosphere effects promote soil aggregate stability and associated organic carbon sequestration in rocky areas of desertification. Agr. Ecosyst. Environ. 2020, 304, 107126. [Google Scholar] [CrossRef]
- Luo, X.S.; Yu, S.; Li, X.D. Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environ. Pollut. 2011, 159, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Demisie, W.; Zhang, S.; Zhang, M. The association of heavy metals with iron oxides in the aggregates of naturally Enriched Soil. Bull. Environ. Contam. Toxicol. 2020, 104, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Li, Z.; Huang, J.; Guo, L.; Nie, X.; Wang, Y.; Zhang, Y.; Zeng, G. Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red paddy soil. J. Hazard. Mater. 2014, 264, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Park, H.J.; Yang, H.I.; Park, S.I.; Lim, S.S.; Kwak, J.H.; Lee, G.T.; Lee, S.M.; Park, M.; Choi, W.J. Sorption of Pb in chemical and particle-size fractions of soils with different physico-chemical properties. J. Soil Sediment 2018, 19, 310–321. [Google Scholar] [CrossRef]
- Zhong, P.; Zhang, J.Q.; Xu, D.M.; Tian, Q.; Hu, T.P.; Gong, X.Y.; Zhan, C.L.; Liu, S.; Xing, X.L.; Qi, S.H. Contamination characteristics of heavy metals in particle size fractions from street dust from an industrial city, Central China. Air Qual. Atmos. HLTH 2020, 13, 871–883. [Google Scholar] [CrossRef]
- Sainju, U.M. Carbon and nitrogen pools in soil aggregates separated by dry and wet sieving methods. Soil Sci. 2006, 171, 937–949. [Google Scholar] [CrossRef] [Green Version]
- Nahidan, S.; Nourbakhsh, F. Distribution pattern of amidohydrolase activities among soil aggregates: Effect of soil aggregates isolation methods. Appl. Soil Ecol. 2018, 125, 250–256. [Google Scholar] [CrossRef]
- Acosta, J.A.; Faz Cano, A.; Arocena, J.M.; Debela, F.; Martínez-Martínez, S. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma 2009, 149, 101–109. [Google Scholar] [CrossRef]
- Ajmone-Marsan, F.; Biasioli, M.; Kralj, T.; Grcman, H.; Davidson, C.M.; Hursthouse, A.S.; Madrid, L.; Rodrigues, S. Metals in particle-size fractions of the soils of five European cities. Environ. Pollut. 2008, 152, 73–81. [Google Scholar] [CrossRef]
- Chen, J.; He, F.; Zhang, X.; Sun, X.; Zheng, J.; Zheng, J. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil. FEMS Microbiol. Ecol. 2014, 87, 164–181. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Y.; Hu, B.; Yu, H.W. Adsorption behaviors of fungicide-derived copper onto various size fractions of aggregates from orchard soil. Environ. Sci. Pollut. Res. Int. 2016, 23, 24983–24990. [Google Scholar] [CrossRef]
- Redon, P.O.; Abdelouas, A.; Bastviken, D.; Cecchini, S.; Nicolas, M.; Thiry, Y. Chloride and organic chlorine in forest soils: Storage, residence times, and influence of ecological conditions. Environ. Sci. Technol. 2011, 45, 7202–7208. [Google Scholar] [CrossRef]
- Svensson, T.; Montelius, M.; Andersson, M.; Lindberg, C.; Reyier, H.; Rietz, K.; Danielsson, A.; Bastviken, D. Influence of multiple environmental factors on organic matter chlorination in podsol soil. Environ. Sci. Technol. 2017, 51, 14114–14123. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.H.; Mu, S.L.; Leng, P.; Dong, Y.L.; Xu, Q.C.; Sun, A. Extraction and analysis of hydrosoluble chlorine and its stable isotopic composition in soil using thermal ionization mass spectrometry. Chem. Geol. 2020, 558, 119993. [Google Scholar] [CrossRef]
- Visconti, F.; Intrigliolo, D.S.; Quiñones, A.; Tudela, L.; Bonet, L.; de Paz, J.M. Differences in specific chloride toxicity to Diospyros kaki cv. “Rojo Brillante” grafted on D. lotus and D. virginiana. Sci. Hortic-Amst. 2017, 214, 83–90. [Google Scholar] [CrossRef]
- Rasiah, V.; Armour, J.D.; Menzies, N.W. Chloride as a signature indicator of soil textural and hydrologic stratigraphies in variable charge deep profiles. Hydrol. Process. 2005, 19, 2007–2022. [Google Scholar] [CrossRef]
- Dong, J.; Yang, Q.W.; Sun, L.N.; Zeng, Q.; Liu, S.J.; Pan, J.; Liu, X.L. Assessing the concentration and potential dietary risk of heavy metals in vegetables at a Pb/Zn mine site, China. Environ. Earth Sci. 2011, 64, 1317–1321. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interf. Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Tang, L.; Tang, X.Y.; Zhu, Y.G.; Zheng, M.H.; Miao, Q.L. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ. Int. 2005, 31, 822–828. [Google Scholar] [CrossRef]
- Determination of Chloride Ion Content in Soil; NY/T 1378-2007; China’s Ministry of Agriculture: Beijing, China, 2007. (In Chinese)
- Sutherland, R.A. Lead in grain size fractions of road-deposited sediment. Environ. Pollut. 2003, 121, 229–237. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Q.; Deng, M.; Japenga, J.; Li, T.; Yang, X.; He, Z. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manage. 2018, 207, 159–168. [Google Scholar] [CrossRef]
- Rehman, I.U.; Ishaq, M.; Ali, L.; Khan, S.; Ahmad, T.; Din, I.U.; Ullah, H. Enrichment, spatial distribution of potential ecological and human health risk assessment via toxic metals in soil and surface water ingestion in the vicinity of Sewakht mines, district Chitral, Northern Pakistan. Ecotoxicol. Environ. Saf. 2018, 154, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Han, P.; Huang, Y.; Yuan, G.L.; Guo, J.X.; Li, J. Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: Multivariate statistical analysis and redundancy analysis. J. Geochem. Explor. 2017, 173, 110–118. [Google Scholar] [CrossRef]
- Bach, E.M.; Hofmockel, K.S. Soil aggregate isolation method affects measures of intra-aggregate extracellular enzyme activity. Soil Biol. Biochem. 2014, 69, 54–62. [Google Scholar] [CrossRef]
- Gelhardt, L.; Huber, M.; Welker, A. Development of a laboratory method for the comparison of settling processes of road-deposited sediments with artificial test material. Water Air Soil Pollut. 2017, 228, 467. [Google Scholar] [CrossRef]
- Bastviken, D.; Sandén, P.; Svensson, T.; Ståhlberg, C.; Magounakis, M.; Öberg, G. Chloride retention and release in a boreal forest soil: Effects of soil water residence time and nitrogen and chloride loads. Environ. Sci. Technol. 2006, 40, 2977–2982. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Chloride in soils and its uptake and movement within the plant: A review. Ann. Bot. 2001, 88, 967–988. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.S.; Qin, Y.; Chen, Y.K. Heavy meals in urban roadside soils, part 1: Effect of particle size fractions on heavy metals partitioning. Environ. Geol. 2006, 50, 1061–1066. [Google Scholar] [CrossRef]
pH | Moisture Content (%) | TOC (g/kg) | |
---|---|---|---|
Urban road soil | 8.42 | 1.78 | 9.76 |
Agricultural soil | 8.45 | 3.38 | 8.01 |
Soil | Particle Size (μm) | Sieving Method | Concentration (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Co | Ni | Cu | Zn | As | Cd | Pb | |||
Urban road soil | >2000 | Dry sieving | 53.95 | 477.25 | 9.15 | 20.16 | 27.49 | 104.66 | 7.89 | 0.40 | 24.02 |
1000–2000 | 54.54 | 490.93 | 9.41 | 23.67 | 32.65 | 108.83 | 8.27 | 0.41 | 24.90 | ||
250–1000 | 56.76 | 504.51 | 8.97 | 26.21 | 38.87 | 118.88 | 8.28 | 0.50 | 23.57 | ||
53–250 | 70.76 | 591.03 | 10.83 | 26.76 | 38.71 | 113.89 | 9.59 | 0.46 | 28.60 | ||
<53 | 74.94 | 644.88 | 11.61 | 30.87 | 44.82 | 143.31 | 11.02 | 0.49 | 32.32 | ||
>2000 | Wet sieving | 56.03 | 489.33 | 8.10 | 20.26 | 31.38 | 90.32 | 8.31 | 0.38 | 23.48 | |
1000–2000 | 47.66 | 472.76 | 7.09 | 16.92 | 30.80 | 86.07 | 7.28 | 0.39 | 25.21 | ||
250–1000 | 63.59 | 560.92 | 9.63 | 24.01 | 37.81 | 104.62 | 9.41 | 0.44 | 27.66 | ||
53–250 | 53.55 | 548.84 | 10.62 | 22.80 | 39.02 | 117.46 | 8.23 | 0.50 | 23.81 | ||
<53 | 67.97 | 602.72 | 11.96 | 25.80 | 41.12 | 121.56 | 10.53 | 0.53 | 29.98 | ||
Agricultural soil | >2000 | Dry sieving | 64.99 | 544.99 | 10.69 | 28.03 | 35.73 | 115.65 | 10.44 | 0.47 | 26.85 |
1000–2000 | 70.35 | 960.41 | 17.41 | 38.79 | 44.75 | 103.90 | 16.86 | 0.50 | 28.91 | ||
250–1000 | 65.78 | 923.34 | 16.06 | 37.04 | 43.53 | 97.56 | 16.00 | 0.49 | 30.67 | ||
53–250 | 58.38 | 617.31 | 13.37 | 32.98 | 37.73 | 118.34 | 11.59 | 0.43 | 27.10 | ||
<53 | 77.83 | 810.61 | 17.73 | 39.92 | 45.40 | 146.06 | 14.15 | 0.61 | 35.55 | ||
>2000 | Wet sieving | 58.64 | 570.33 | 13.06 | 30.08 | 30.39 | 108.59 | 10.64 | 0.48 | 29.88 | |
1000–2000 | 57.65 | 646.67 | 14.47 | 32.85 | 38.09 | 100.30 | 13.87 | 0.41 | 28.05 | ||
250–1000 | 64.34 | 617.87 | 12.36 | 29.96 | 34.21 | 122.65 | 9.42 | 0.52 | 25.83 | ||
53–250 | 70.47 | 707.26 | 15.50 | 37.90 | 29.78 | 136.04 | 10.73 | 0.45 | 33.36 | ||
<53 | 73.53 | 748.11 | 16.78 | 42.40 | 40.58 | 163.47 | 14.96 | 0.56 | 34.45 |
Soil | Particle Size (μm) | Sieving Method | Cr | Mn | Co | Ni | Cu | Zn | As | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|
Urban road soil | >2000 | Dry sieving | 0.91 | 0.88 | 0.93 | 0.88 | 0.72 | 0.94 | 0.82 | 0.83 | 0.86 |
1000–2000 | 0.92 | 0.90 | 0.96 | 1.03 | 0.85 | 0.97 | 0.86 | 0.85 | 0.89 | ||
250–1000 | 0.96 | 0.93 | 0.91 | 1.14 | 1.01 | 1.06 | 0.86 | 1.04 | 0.85 | ||
53–250 | 1.20 | 1.09 | 1.10 | 1.16 | 1.01 | 1.02 | 0.96 | 0.95 | 1.03 | ||
<53 | 1.27 | 1.19 | 1.18 | 1.34 | 1.17 | 1.28 | 1.11 | 1.06 | 1.16 | ||
>2000 | Wet sieving | 0.95 | 0.90 | 0.82 | 0.88 | 0.82 | 0.81 | 0.87 | 0.79 | 0.84 | |
1000–2000 | 0.81 | 0.87 | 0.72 | 0.73 | 0.80 | 0.77 | 0.76 | 0.81 | 0.91 | ||
250–1000 | 1.08 | 1.03 | 0.88 | 1.04 | 0.99 | 0.94 | 0.98 | 0.93 | 0.99 | ||
53–250 | 0.91 | 1.01 | 1.08 | 0.99 | 1.02 | 1.05 | 1.17 | 1.04 | 0.86 | ||
<53 | 1.15 | 1.11 | 1.22 | 1.12 | 1.07 | 1.09 | 1.06 | 1.10 | 1.08 | ||
Agricultural soil | >2000 | Dry sieving | 0.94 | 0.78 | 0.71 | 0.78 | 0.98 | 0.93 | 0.79 | 0.95 | 0.82 |
1000–2000 | 1.02 | 1.37 | 1.16 | 1.08 | 1.23 | 0.83 | 1.07 | 1.01 | 0.89 | ||
250–1000 | 0.95 | 1.32 | 1.07 | 1.03 | 1.20 | 0.78 | 1.12 | 0.98 | 0.94 | ||
53–250 | 0.84 | 0.88 | 0.89 | 0.92 | 1.04 | 0.95 | 0.87 | 0.87 | 0.83 | ||
<53 | 1.12 | 1.16 | 1.18 | 1.11 | 1.25 | 1.17 | 1.06 | 1.21 | 1.09 | ||
>2000 | Wet sieving | 0.85 | 0.82 | 0.87 | 0.84 | 0.83 | 0.87 | 0.80 | 0.96 | 0.91 | |
1000–2000 | 0.83 | 0.93 | 0.96 | 0.91 | 1.05 | 0.80 | 1.04 | 0.81 | 0.86 | ||
250–1000 | 0.93 | 0.88 | 0.82 | 0.83 | 0.94 | 0.98 | 0.93 | 1.04 | 0.79 | ||
53–250 | 1.02 | 1.01 | 1.03 | 1.06 | 0.82 | 1.09 | 0.81 | 0.91 | 1.02 | ||
<53 | 1.06 | 1.07 | 1.11 | 1.18 | 1.11 | 1.31 | 1.09 | 1.12 | 1.05 |
Soil | Particle Size (μm) | Sieving Method | Mass Loading (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Co | Ni | Cu | Zn | As | Cd | Pb | |||
Urban road soil | >2000 | Dry sieving | 8.56 | 8.66 | 9.04 | 7.57 | 7.16 | 8.66 | 8.68 | 8.24 | 8.98 |
1000–2000 | 20.49 | 21.09 | 22.04 | 21.05 | 20.14 | 21.33 | 21.53 | 20.02 | 22.05 | ||
250–1000 | 37.44 | 38.06 | 36.86 | 40.92 | 42.09 | 40.91 | 37.83 | 42.90 | 36.66 | ||
53–250 | 27.51 | 26.28 | 26.24 | 24.62 | 24.71 | 23.10 | 25.84 | 23.27 | 26.21 | ||
<53 | 6.01 | 5.91 | 5.80 | 5.85 | 5.90 | 5.99 | 6.12 | 5.11 | 6.11 | ||
>2000 | Wet sieving | 4.28 | 3.91 | 3.55 | 3.91 | 3.64 | 3.60 | 4.19 | 3.51 | 4.00 | |
1000–2000 | 9.74 | 10.11 | 8.30 | 8.73 | 9.56 | 9.17 | 9.80 | 9.62 | 11.49 | ||
250–1000 | 29.20 | 26.95 | 25.33 | 27.84 | 26.37 | 25.04 | 28.47 | 24.81 | 28.32 | ||
53–250 | 43.95 | 47.12 | 49.92 | 47.24 | 48.64 | 50.24 | 44.49 | 49.70 | 43.57 | ||
<53 | 12.83 | 11.90 | 12.93 | 12.29 | 11.79 | 11.96 | 13.10 | 12.08 | 12.62 | ||
Agricultural soil | >2000 | Dry sieving | 31.85 | 23.92 | 24.35 | 26.75 | 28.74 | 33.11 | 25.35 | 31.29 | 30.24 |
1000–2000 | 23.15 | 28.30 | 26.64 | 24.85 | 24.16 | 19.97 | 27.47 | 22.35 | 21.86 | ||
250–1000 | 17.13 | 21.53 | 19.44 | 18.77 | 18.60 | 14.83 | 20.63 | 17.25 | 18.35 | ||
53–250 | 17.57 | 16.64 | 18.69 | 19.32 | 18.63 | 20.80 | 17.26 | 17.61 | 18.73 | ||
<53 | 10.30 | 9.61 | 10.91 | 10.29 | 9.86 | 11.29 | 9.28 | 10.84 | 10.81 | ||
>2000 | Wet sieving | 7.15 | 6.90 | 7.28 | 6.93 | 7.39 | 6.84 | 7.60 | 8.10 | 7.91 | |
1000–2000 | 12.32 | 13.71 | 14.14 | 13.27 | 16.24 | 11.07 | 17.35 | 12.04 | 13.01 | ||
250–1000 | 22.70 | 21.62 | 19.93 | 19.98 | 24.08 | 22.35 | 19.46 | 25.53 | 19.78 | ||
53–250 | 44.19 | 44.00 | 44.44 | 44.93 | 37.26 | 44.07 | 39.38 | 39.41 | 45.42 | ||
<53 | 13.64 | 13.77 | 14.23 | 14.87 | 15.02 | 15.67 | 16.25 | 14.40 | 13.87 |
Soil | Particle Size (μm) | Sieving Method | Cr | Mn | Co | Ni | Cu | Zn | As | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|
Urban road soil | >2000 | Dry sieving | 1.63 | 0.68 | 2.93 | 3.58 | 5.95 | 1.02 | 8.40 | 171.00 | 4.73 |
1000–2000 | 1.65 | 0.70 | 3.02 | 4.20 | 7.07 | 1.06 | 8.80 | 175.26 | 4.90 | ||
250–1000 | 1.72 | 0.72 | 2.87 | 4.65 | 8.41 | 1.16 | 8.81 | 201.66 | 4.64 | ||
53–250 | 2.14 | 0.84 | 3.47 | 4.74 | 8.38 | 1.11 | 9.78 | 185.60 | 5.63 | ||
<53 | 2.27 | 0.91 | 3.72 | 5.47 | 9.70 | 1.40 | 11.30 | 205.87 | 6.36 | ||
>2000 | Wet sieving | 1.70 | 0.69 | 2.60 | 3.59 | 6.79 | 0.88 | 8.84 | 162.96 | 4.62 | |
1000–2000 | 1.44 | 0.67 | 2.27 | 3.00 | 6.67 | 0.84 | 7.75 | 166.94 | 4.96 | ||
250–1000 | 1.92 | 0.80 | 3.09 | 4.26 | 8.18 | 1.02 | 10.02 | 180.09 | 5.44 | ||
53–250 | 1.62 | 0.78 | 3.40 | 4.04 | 8.45 | 1.14 | 11.95 | 201.88 | 4.69 | ||
<53 | 2.06 | 0.85 | 3.83 | 4.57 | 8.90 | 1.18 | 10.78 | 213.30 | 5.90 | ||
Agricultural soil | >2000 | Dry sieving | 1.97 | 0.77 | 3.43 | 4.97 | 7.73 | 1.13 | 11.11 | 191.83 | 5.29 |
1000–2000 | 2.13 | 1.36 | 5.58 | 6.88 | 9.69 | 1.01 | 15.17 | 204.09 | 5.69 | ||
250–1000 | 1.99 | 1.31 | 5.15 | 6.57 | 9.42 | 0.95 | 15.83 | 199.13 | 6.04 | ||
53–250 | 1.77 | 0.88 | 4.28 | 5.85 | 8.17 | 1.15 | 12.33 | 175.86 | 5.33 | ||
<53 | 2.36 | 1.15 | 5.68 | 7.08 | 9.83 | 1.42 | 15.05 | 246.19 | 7.00 | ||
>2000 | Wet sieving | 1.77 | 0.81 | 4.18 | 5.33 | 6.58 | 1.06 | 11.32 | 194.20 | 5.88 | |
1000–2000 | 1.74 | 0.92 | 4.64 | 5.82 | 8.24 | 0.98 | 14.75 | 164.57 | 5.52 | ||
250–1000 | 1.95 | 0.88 | 3.96 | 5.31 | 7.41 | 1.20 | 13.22 | 211.39 | 5.08 | ||
53–250 | 2.13 | 1.00 | 4.97 | 6.72 | 6.45 | 1.33 | 11.41 | 183.58 | 6.57 | ||
<53 | 2.22 | 1.06 | 5.38 | 7.52 | 8.78 | 1.59 | 15.49 | 226.72 | 6.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, N.; Luo, M.; Meng, D.; Xu, D.; Liu, Z.; Shao, Y.; Ma, L. Effect of Soil Aggregate Separation Methods on the Occurrence Characteristics of Typical Pollutants. Processes 2022, 10, 216. https://doi.org/10.3390/pr10020216
Zheng N, Luo M, Meng D, Xu D, Liu Z, Shao Y, Ma L. Effect of Soil Aggregate Separation Methods on the Occurrence Characteristics of Typical Pollutants. Processes. 2022; 10(2):216. https://doi.org/10.3390/pr10020216
Chicago/Turabian StyleZheng, Nan, Min Luo, Danyang Meng, Diandou Xu, Zhiming Liu, Yang Shao, and Lingling Ma. 2022. "Effect of Soil Aggregate Separation Methods on the Occurrence Characteristics of Typical Pollutants" Processes 10, no. 2: 216. https://doi.org/10.3390/pr10020216
APA StyleZheng, N., Luo, M., Meng, D., Xu, D., Liu, Z., Shao, Y., & Ma, L. (2022). Effect of Soil Aggregate Separation Methods on the Occurrence Characteristics of Typical Pollutants. Processes, 10(2), 216. https://doi.org/10.3390/pr10020216