Valorising Agricultural Residues through Pelletisation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Acquisition and Preparation
2.2. Reference Standards
2.3. Pelletisation Tests
2.4. Analyses of Biomass Materials and Pellet Samples
2.5. Data Elaboration
- -
- Effects of the blend on process parameters (Pr and Tm) and the mechanical quality of the pellet produced (D);
- -
- Specific relation between process factors (Tm vs. Pr);
- -
- Specific relation between quality factors (F vs. D).
3. Results
3.1. Results of Analyses Performed on Biomass Materials and Pellets
3.2. Results of Pelletisation Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Montola, V.; Colonna, N.; Alfano, V.; Gaeta, M.; Sasso, S.; De Luca, V.; De Angelis, C.; Soda, A.; Braccio, G. Censimento potenziale energetico biomasse, metodo indagine, atlante Biomasse su WEB-GIS. Ric. Sist. Elettr. 2009, 167, 141. [Google Scholar]
- Riva, G. Volume 1—I Sottoprodotti di Interesse del DM 6.7.2012—Inquadramento, Potenzialità e Valutazioni; CTI: Milano, Italy, 2013; p. 155. ISBN 978889061864 2. [Google Scholar]
- Pizzi, A.; Foppa Pedretti, E.; Duca, D.; Rossini, G.; Mengarelli, C.; Ilari, A.; Mancini, M.; Toscano, G. Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects. Renew. Energy 2018, 121, 513–520. [Google Scholar] [CrossRef]
- Picchi, G.; Lombardini, C.; Pari, L.; Spinelli, R. Physical and chemical characteristics of renewable fuel obtained from pruning residues. J. Clean. Prod. 2018, 171, 457–463. [Google Scholar] [CrossRef]
- Pari, L.; Suardi, A.; Santangelo, E.; García-Galindo, D.; Scarfone, A.; Alfano, V. Current and innovative technologies for pruning harvesting: A review. Biomass Bioenergy 2017, 107, 398–410. [Google Scholar] [CrossRef]
- Sagani, A.; Hagidimitriou, M.; Dedoussis, V. Perennial tree pruning biomass waste exploitation for electricity generation: The perspective of Greece. Sustain. Energy Technol. Assess. 2019, 31, 77–85. [Google Scholar] [CrossRef]
- Dyjakon, A.; García-Galindo, D. Implementing Agricultural Pruning to Energy in Europe: Technical, Economic and Implementation Potentials. Energies 2019, 12, 1513. [Google Scholar] [CrossRef] [Green Version]
- Lenz, V.; Zeng, T. Summary of the MixBioPells Project Results; DBFZ: Leipzig, Germany, 2012. [Google Scholar]
- Toscano, G.; Alfano, V.; Scarfone, A.; Pari, L. Pelleting Vineyard Pruning at Low Cost with a Mobile Technology. Energies 2018, 11, 2477. [Google Scholar] [CrossRef] [Green Version]
- Ntalos, G.; Grigoriou, A. Characterisation and utilisation of vine prunings as a wood substitute for particleboard production. Ind. Crop. Prod. 2002, 16, 59–68. [Google Scholar] [CrossRef]
- Bernetti, I.; Fagarazzi, C.; Fratini, R. A methodology to analyze the potential development of biomass energy sector: An application in Tuscany. For. Policy Econ. 2006, 6, 415–432. [Google Scholar] [CrossRef]
- European Commission. Innovating for Sustainable Growth—A Bioeconomy for Europe; Publication Office of the European Union: Luxembourg, 2012.
- Spinelli, R.; Magagnotti, N.; Nati, C. Harvesting vineyard pruning residues for energy use. Biosyst. Eng. 2010, 105, 316–322. [Google Scholar] [CrossRef]
- Muazu, R.I.; Borrion, A.L.; Stegemann, J.A. Life cycle assessment of biomass densification systems. Biomass Bioenergy 2017, 107, 384–397. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Legros, R.; Bi, X.T.; Jim Lim, C.; Sokhansanj, S. Pelletization of torrefied sawdust and properties of torrefied pellets. Appl. Energy 2012, 93, 680–685. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.; Sanadi, A.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 2011, 90, 3285–3290. [Google Scholar] [CrossRef] [Green Version]
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefining 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. A study of bonding and failure mechanisms in fuel pellets from different biomass resources. Biomass Bioenergy 2011, 35, 910–918. [Google Scholar] [CrossRef] [Green Version]
- Michal Holubcik, M.; Nosek, R.; Jandacka, J. Optimization of the Production Process of Wood Pellets by Adding Additives. Int. J. Energy Optim. Eng. 2012, 1, 20–40. [Google Scholar] [CrossRef] [Green Version]
- Toscano, G.; Riva, G.; Foppa Pedretti, E.; Corinaldesi, F.; Mengarelli, C.; Duca, D. Investigation on wood pellet quality and relationship between ash content and the most important chemical elements. Biomass Bioenergy 2013, 56, 317–322. [Google Scholar] [CrossRef]
- Sultana, A.; Kumar, A.; Harfield, D. Development of agri-pellet production cost and optimum size. Bioresour. Technol. 2010, 101, 5609–5621. [Google Scholar] [CrossRef]
- Albashabsheh, N.T.; Heier Stamm, J.L. Optimization of lignocellulosic biomass-to-biofuel supply chains with mobile pelleting. Transp. Res. Part E Logist. Transp. Rev. 2019, 122, 545–562. [Google Scholar] [CrossRef]
- Ilari, A.; Toscano, G.; Foppa Pedretti, E.; Fabrizi, S.; Duca, D. Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues. Resources 2020, 9, 94. [Google Scholar] [CrossRef]
- Picchi, G.; Silvestri, S.; Cristoforetti, A. Vineyard residues as a fuel for domestic boilers in Trento Province (Italy): Comparison to wood chips and means of polluting emissions control. Fuel 2013, 113, 43–49. [Google Scholar] [CrossRef]
- Sirous, R.; da Silva, F.J.N.; da Cruz Tarelho, L.A.; Martins, N.A.D. Mixed biomass pelleting potential for Portugal, step forward to circular use of biomass residues. Energy Rep. 2020, 6, 940–945. [Google Scholar] [CrossRef]
- Mostafa, M.E.; Hu, S.; Wang, Y.; Su, S.; Hu, X.; Elsayed, S.A.; Xiang, J. The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets. Renew. Sustain. Energy Rev. 2019, 105, 332–348. [Google Scholar] [CrossRef]
- Zanetti, M.; Benoît, B.; Marini, D.; Sgarbossa, A.; Giorio, C.; Badocco, D.; Tapparo, A.; Grigolato, S.; Rogaume, C.; Rogaume, Y.; et al. Vineyard pruning residues pellets for use in domestic appliances: A quality assessment according to the EN ISO 17225. J. Agric. Eng. 2017, XLVIII, 612. [Google Scholar] [CrossRef] [Green Version]
- García-Maraver, A.; Ramos-Ridao, A.F.; Ruiz, D.P.; Zamorano, M. Zamorano Quality of pellets from olive grove residual biomass. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada, Spain, 23–25 March 2010. [Google Scholar]
- Kocer, A.; Kurklu, A. Production of pellets from pruning residues and determination of pelleting physical properties. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–13. [Google Scholar] [CrossRef]
- UNI UNI/TS 11772:2020; Solid Biofuels—Specification and Classification of Biofuels—Definition of Woody and Non-Woody Briquettes in Addition to UNI EN ISO 17225-3 and UNI EN ISO 17225-7. UNI: Rome, Italy, 2020.
- UNI UNI/TS 11773:2020; Solid Biofuels—Specification and Classification of Biofuels—Definition of Woody and Non-Woody Pellets in Addition to UNI EN ISO 17225-2 e UNI EN ISO 17225-6. UNI: Rome, Italy, 2020.
- EN ISO 18134-3; Solid Biofuels. Determination of Moisture Content. Oven Dry Method. Moisture in General Analysis Sample. European Committee for Standardization: Brussels, Belgium, 2015.
- EN ISO 18122; Solid biofuels—Determination of ash content, ISO. European Committee for Standardization: Brussels, Belgium, 2015.
- ISO 18125; Solid biofuels—Determination of calorific value, ISO. European Committee for Standardization: Brussels, Belgium, 2018.
- EN ISO 16994:2015; Solid Biofuels—Determination of Total Content of Sulfur and Chlorine. European Committee for Standardization: Brussels, Belgium, 2015.
- ISO 16948; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen, and Nitrogen, ISO. European Committee for Standardization: Brussels, Belgium, 2015.
- EN ISO 14780:2017; Solid Biofuels—Sample Preparation. ISO: Geneva, Switzerland, 2017.
- EN ISO 17225-2:2014; Solid Biofuels—Fuel Specifications and Classes—Part 2: Graded Wood Pellets. ISO: Geneva, Switzerland, 2014.
- Phyllis2 Database for (Treated) Biomass, Algae, Feedstocks for Biogas Production and Biochar. TNO Biobased and Circular Technologies. Available online: https://phyllis.nl/ (accessed on 15 January 2020).
- EN ISO 17225-1:2014; Solid Biofuels—Fuel Specifications and Classes—Part 1: General Requirements. ISO: Geneva, Switzerland, 2014.
- Serrano, C.; Monedero, E.; Lapuerta, M.; Portero, H. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Processing Technol. 2011, 92, 699–706. [Google Scholar] [CrossRef]
- Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 2001, 20, 351–360. [Google Scholar] [CrossRef]
- Kaliyan, N.; Morey, R.V. Factors affecting strength and durability of densified biomass products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Gilbert, P.; Ryu, C.; Sharifi, V.; Swithenbank, J. Effect of process parameters on pelletisation of herbaceous crops. Fuel 2009, 88, 1491–1497. [Google Scholar] [CrossRef]
- Castellano, J.M.; Gómez, M.; Fernández, M.; Esteban, L.S.; Carrasco, J.E. Study on the effects of raw materials composition and pelletization conditions on the quality and properties of pellets obtained from different woody and non woody biomasses. Fuel 2015, 139, 629–636. [Google Scholar] [CrossRef]
- Whittaker, C.; Shield, I. Factors affecting wood, energy grass and straw pellet durability—A review. Renew. Sustain. Energy Rev. 2017, 71, 1–11. [Google Scholar] [CrossRef]
- Thunman, H.; Leckner, B. Influence of size and density of fuel on combustion in a packed bed. Proc. Combust. Inst. 2005, 30, 2939–2946. [Google Scholar] [CrossRef]
- Wöhler, M.; Jaeger, D.; Reichert, G.; Schmidl, C.; Pelz, S.K. Influence of pellet length on performance of pellet room heaters under real life operation conditions. Renew. Energy 2017, 105, 66–75. [Google Scholar] [CrossRef]
N°Test | Blend | Blend Composition | N°Test | Blend | Blend Composition | ||
---|---|---|---|---|---|---|---|
Spruce Sawdust | Olive Pruning | Spruce Sawdust | Vineyard Pruning | ||||
(%) | (%) | (%) | (%) | ||||
1–3 | S100-O0 | 100 | 0 | 16–18 | S100-V0 | 100 | 0 |
4–6 | S80-O20 | 80 | 20 | 19–21 | S80-V20 | 80 | 20 |
7–9 | S50-O50 | 50 | 50 | 22–24 | S50-V50 | 50 | 50 |
10–12 | S20-O80 | 20 | 80 | 25–27 | S20-V80 | 20 | 80 |
13–15 | S0-O100 | 0 | 100 | 28–30 | S0-V100 | 0 | 100 |
Parameter | Standard | UM * | Biomass | Pellet | Instruments |
---|---|---|---|---|---|
Moisture content (M) | ISO 18134 | % a.r. | To check that the biomass has a low moisture value: generally, less than 13% on standard woody materials and 18% on pruning. | To evaluate the quality and completeness of the pelletising process. Usually, less than 10% for the pellet produced. | Forced ventilation oven (mod. M120-VF, MPM Instruments–Bernareggio, Italy) |
Ash content (A) | ISO 18122 | % d.m. | The measurement of these parameters allows verifying the quality of the raw materials used in the tests and the final products. | Muffle furnace (mod. ZA, Prederi Vittorio & figli–Milano, Italy) | |
Higher Calorific Value (HCV) | ISO 18125 | MJ/kg | Isoperibolic calorimeter (mod.C2000 basic, IKA-Staufen im Breisgau, Germany) | ||
Nitrogen content (N) | ISO 16948 | % d.m. | Elemental analyzer (mod. 2400 Series II CHNS/O System, Perkin Elmer-Milano, Italy) | ||
Chlorine content (Cl) | ISO 16994 | % d.m. | Liquid ion chromatographer (mod. 761 COMPACT IC, Metrohm-Formello, Roma, Italy)). | ||
Sulfur content (S) | ISO 16994 | % d.m. | Liquid ion chromatographer (mod. 761 COMPACT IC, Metrohm–Formello, Roma, Italy)). | ||
Durability (D) | ISO 17831-1 | % | Not applicable | To evaluate the compaction efficiency of the pelletising process. | Mechanical durability tester (Andritz Sprout rotation pellet testing apparatus-Esbjerg, Denmark) |
Length (L) | ISO 17829 | mm | Not applicable | They are considered indicators of biomass cohesion during the extrusion process. | Standard laboratory equipment |
Fines (F) | ISO 18846 | % | Not applicable | Standard laboratory equipment |
Parameter | Unit | Olive Pruning | Vineyard Pruning | Spruce Sawdust | ISO 17225-1 Table B.4 (a) | ISO 17225-1 Table B.1 (b) |
---|---|---|---|---|---|---|
M | (%) | 17.5 a (0.4) | 18.2 a (0.7) | 12.8 b (0.4) | --- | --- |
A | (% d.m.) | 2.9 b (0.3) | 4.4 a (0.4) | 0.5 c (0.1) | 0.5–4.0 | 0.2–1.0 |
LCV | (MJ/kg d.m.) | 17.7 a (0.3) | 17.9 a (0.3) | 18.2 a (0.2) | 17.6–19.0 | 18.4–19.8 |
N | (% d.m.) | 0.43 b (0.03) | 0.64 a (0.04) | 0.23 c (0.02) | 0.1–0.8 | 0.1–0.5 |
Cl | (% d.m.) | 0.04 a (0.01) | 0.05 a (0.01) | 0.02 b (0.01) | 0.03–0.10 | 0.01–0.03 |
S | (% d.m.) | 0.03 a (<0.01) | 0.03 a (0.01) | 0.01 b (<0.01) | 0.01–0.11 | 0.01–0.05 |
Parameter | Unit | S100O0 | S80O20 | S50O50 | S20O80 | S0O100 | ISO 17225-2 (a) | UNI/TS 11773 (b) |
---|---|---|---|---|---|---|---|---|
M | (%) | 6.2 a (0.2) | 6.8 a (0.2) | 6.6 a (0.2) | 6.7 a (0.4) | 6.5 a (0.2) | ≤10 | ≤10 |
A | (% d.m.) | 0.5 a (0.1) | 1.04 b (0.1) | 1.6 c (0.2) | 2.6 d (0.2) | 3.1 e (0.2) | ≤3.0 | ≤5.0 |
LCV | (MJ/kg d.m.) | 18.0 a (0.2) | 17.8 a (0.2) | 18.0 a (0.1) | 18.1 a (0.2) | 17.9 a (0.1) | --- | --- |
LCV | (MJ/kg a.r.) | 16.9 | 16.6 | 16.8 | 16.9 | 16.7 | ≥16.5 | ≥15.0 |
N | (% d.m.) | 0.25 a (0.03) | 0.27 a (0.02) | 0.35 b (0.03) | 0.44 c (0.02) | 0.47 c (0.03) | ≤0.6 | ≤1.5 |
Cl | (% d.m.) | 0.02 a (0.01) | 0.02 a (0.01) | 0.03 ab (0.01) | 0.04 b (0.01) | 0.04 b (0.01) | ≤0.1 | ≤0.1 |
S | (% d.m.) | 0.01 a (<0.01) | 0.02 ab (<0.01) | 0.02 ab (<0.01) | 0.02 ab (<0.01) | 0.03 b (<0.01) | ≤0.05 | ≤0.05 |
Parameter | Unit | S100V0 | S80V20 | S50V50 | S20V80 | S0V100 | ISO 17225-2 (a) | UNI/TS 11773 (b) |
---|---|---|---|---|---|---|---|---|
M | (%) | 6.2 a (0.2) | 6.6 a (0.2) | 6.8 a (0.4) | 6.7 a (0.4) | 6.7 a (0.2) | ≤10 | ≤10 |
A | (% d.m.) | 0.5 a (0.1) | 1.3 b (0.1) | 2.1 c (0.2) | 3.6 d (0.3) | 4.3 e (0.2) | ≤3.0 | ≤5.0 |
LCV | (MJ/kg d.m.) | 18.1 a (0.1) | 18.0 a (0.1) | 18.3 a (0.2) | 18.0 a (0.2) | 18.2 a (0.1) | --- | --- |
LCV | (MJ/kg a.r.) | 17.0 | 16.8 | 17.1 | 16.8 | 17.0 | ≥16.5 | ≥15.0 |
N | (% d.m.) | 0.21 a (0.01) | 0.27 b (0.02) | 0.31 b (0.02) | 0.39 c (0.02) | 0.44 c (0.03) | ≤0.6 | ≤1.5 |
Cl | (% d.m.) | 0.02 a (0.01) | 0.03 ab (0.01) | 0.04 b (0.01) | 0.04 b (<0.01) | 0.05 b (0.01) | ≤0.1 | ≤0.1 |
S | (% d.m.) | 0.01 a (<0.01) | 0.02 ab (<0.01) | 0.02 ab (<0.01) | 0.03 b (<0.01) | 0.03 b (0.01) | ≤0.05 | ≤0.05 |
Test | Mi | Mf | D | L | F | Pr (kg/h) | P (kW) | Tm |
---|---|---|---|---|---|---|---|---|
S100O0 | 11.9 a (0.4) | 6.2 a (0.2) | 78.4 a (2.7) | 12.9 a (0.3) | 5.6 a (0.4) | 56.2 a (1.7) | 10.7 a (0.1) | 84.6 a (0.8) |
S80O20 | 12.6 a (0.6) | 6.8 a (0.2) | 92.2 b (1.3) | 32.3 b (1.1) | 1.7 b (0.1) | 59.1 ab (1.0) | 11.8 b (0.1) | 96.4 b (0.6) |
S50O50 | 15.5 b (1.0) | 6.6 a (0.2) | 95.8 bc (0.3) | 42.9 c (1.1) | 0.6 c (0.1) | 60.5 b (0.8) | 12.7 c (0.1) | 102.0 c (0.9) |
S20O80 | 16.5 bc (0.5) | 6.7 a (0.4) | 97.8 c (0.3) | 44.5 c (0.3) | 0.2 c (<0.1) | 59.0 ab (1.2) | 13.1 c (0.1) | 104.0 c (1.6) |
S0O100 | 17.5 c (0.4) | 6.5 a (0.2) | 99.3 c (0.3) | 44.1 c (0.2) | 0.2 c (<0.1) | 58.3 ab (0.9) | 14.0 d (0.1) | 107.3 d (1.2) |
Test | Mi | Mf | D | L | F | Pr (kg/h) | P (kW) | Tm |
---|---|---|---|---|---|---|---|---|
S100V0 | 11.8 a (0.4) | 6.2 a (0.2) | 78.4 a (2.7) | 12.9 a (0.3) | 5.6 a (0.4) | 56.2 a (1.8) | 10.7 a (0.1) | 85.3 a (1.3) |
S80V20 | 12.9 a (0.8) | 6.6 a (0.2) | 90.3 b (1.6) | 25.1 b (1.2) | 2.1 b (0.1) | 57.5 a (1.4) | 11.7 b (0.1) | 94.6 b (0.4) |
S50V50 | 14.9 b (0.3) | 6.8 a (0.4) | 94.8 c (0.3) | 33.1 c (1.0) | 1.7 b (0.2) | 59.3 a (1.6) | 12.2 c (0.1) | 98.4 c (1.5) |
S20V80 | 17.4 c (0.4) | 6.7 a (0.4) | 96.9 c (0.5) | 40.1 d (0.4) | 1.1 c (0.2) | 63.5 b (1.2) | 12.4 c (0.1) | 100.6 c (2.0) |
S0V100 | 18.4 c (0.7) | 6.7 a (0.2) | 98.3 c (0.3) | 40.4 d (0.7) | 0.9 c (0.2) | 68.8 c (1.6) | 12.9 d (0.1) | 100.0 c (1.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duca, D.; Maceratesi, V.; Fabrizi, S.; Toscano, G. Valorising Agricultural Residues through Pelletisation. Processes 2022, 10, 232. https://doi.org/10.3390/pr10020232
Duca D, Maceratesi V, Fabrizi S, Toscano G. Valorising Agricultural Residues through Pelletisation. Processes. 2022; 10(2):232. https://doi.org/10.3390/pr10020232
Chicago/Turabian StyleDuca, Daniele, Vittorio Maceratesi, Sara Fabrizi, and Giuseppe Toscano. 2022. "Valorising Agricultural Residues through Pelletisation" Processes 10, no. 2: 232. https://doi.org/10.3390/pr10020232
APA StyleDuca, D., Maceratesi, V., Fabrizi, S., & Toscano, G. (2022). Valorising Agricultural Residues through Pelletisation. Processes, 10(2), 232. https://doi.org/10.3390/pr10020232