Moisture Transport Coefficients Determination on a Model Pharmaceutical Tablet
Abstract
:1. Introduction
1.1. Mathematical Model
1.2. Heat Balance
1.3. Moisture Transport
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Powder Particles’ Water Content
2.2.2. Powder Particles’ Size Distribution
2.2.3. Tablet Compression
2.2.4. Particle and Compressed Powder Tablet Surface Analysis
2.2.5. Tablet Internal Pore Size Distribution
Water Penetration Time Method
2.2.6. Moisture Transport Coefficient Determination Methods
Tablet Moisture Transfer Coefficient (ASTM D6539)
Tablet Moisture Diffusion Coefficient
- When Kn < 0.01, the water vapor follows a continuum flow. The mean free path of the water vapor molecules is much less than the pore’s radius, which means that particle–particle collision dominates the diffusion in the compressed powder tablet pore. The diffusion coefficient is then estimated by the classical molecular diffusion D0.
- When 0.1 < Kn < 10, the water vapor follows a transitional flow. The diffusion is a mixture of particle−particle collisions and particle−wall collisions. In that case, the diffusion coefficient is given by [43]:
- When Kn > 10, the water vapor follows the free molecular flow, which is also called Knudsen diffusion. The mean free path of the water vapor molecules is greater than the pore radius. Molecule–pore wall collisions dominate the water vapor diffusion in the compressed powder tablet pore. The diffusion coefficient is given by [43,46]:
Water Vapor Permeability
3. Results
3.1. Tablet Relative Density and Porosity
3.2. Tablet Average Pore Radius at Each Compression Pressure
3.3. Tablet Moisture Transfer Coefficient (ASTM D6539)
3.4. Tablet Moisture Diffusion Coefficient
3.5. Water Vapor Permeability
4. Conclusions
- (1)
- the powder’s moisture behavior during the loading phase of the compression to investigate problems such as delamination, caking, or sticking;
- (2)
- the adsorption of moisture by the tablet after the ejection, which is known to weaken the tablet. However, since the pores’ size can change with time due to particle swelling, a time-dependent factor must be eventually considered in the mathematical model.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerad, K.; Bolhuis, N.; Armstrong, A. Excipients for direct compaction—An update. Pharmaceutical development and technology. Pharm. Dev. Technol. 2006, 11, 111–124. [Google Scholar] [CrossRef]
- Sun, C.C. True density of microcrystalline cellulose. J. Pharm. Sci. 2005, 94, 2132–2134. [Google Scholar] [CrossRef] [PubMed]
- Alderborn, G.; Ahlneck, C. Moisture adsorption and tabletting. III. Effect on tablet strength−post compaction storage time profiles. Int. J. Pharm. 1991, 73, 249–258. [Google Scholar] [CrossRef]
- Malamataris, S.; Goidas, P.; Dimitriou, P.G. Moisture sorption and tensile strength of some tableted direct compression excipients. Int. J. Pharm. 1991, 68, 51–60. [Google Scholar] [CrossRef]
- SunC, C. Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int. J. Pharm. 2008, 346, 93–101. [Google Scholar] [CrossRef]
- Newman, A.W.; Reutzel-Edens, S.M.; Zografi, G. Characterization of the “hygroscopic” properties of active pharmaceutical ingredients. J. Pharm. Sci. 2008, 97, 1047–1059. [Google Scholar] [CrossRef]
- Crouter, A.; Briens, L. The Effect of Moisture on the Flowability of Pharmaceutical Excipients. AAPS PharmSciTech 2014, 15, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Zografi, G.; Kontny, M.J.; Yang, A.Y.S.; Brenner, G.S. Surface area and water vapor sorption of microcrystalline cellulose. Int. J. Pharm. 1984, 18, 99–116. [Google Scholar] [CrossRef]
- Partheniadis, I.; Kopanelou, D.; Gamlen, M.; Nikolakakis, I. Monitoring the weight and dimensional expansion of pyridostigmine bromide tablets under dynamic vapor sorption and impact of deliquescence on tablet strength and drug release. Int. J. Pharm. 2021, 609, 121150. [Google Scholar] [CrossRef]
- Shi, L.; Feng, Y.; Sun, C.C. Initial moisture content in raw material can profoundly influence high shear wet granulation process. Int. J. Pharm. 2011, 416, 43–48. [Google Scholar] [CrossRef]
- Khan, F.; Pilpel, N.; Ingram, S. The effect of moisture on the density, compaction, and tensile strength of microcrystalline cellulose. Powder Technol. 1988, 54, 161–164. [Google Scholar] [CrossRef]
- Amidon, G.E.; Houghton, M.E. The effect of moisture on the mechanical and powder flow properties of microcrystalline cellulose. Pharm. Res. 1995, 12, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Garr, J.S.M.; Rubinstein, M.H. The influence of moisture content on the consolidation and compaction properties of paracetamol. Int. J. Pharm. 1992, 81, 187–192. [Google Scholar] [CrossRef]
- Choudhary, A. Causes and Remedies of Lamination in Tablet Manufacturing, Lamination in Tablets During the Compression is a Major Problem in Tablet Manufacturing. Available online: https://www.pharmaguideline.com/2017/11/causes-and-remedies-of-lamination.html (accessed on 30 October 2021).
- Danjo, K.; Kojima, S.; Chen, C.Y.; Sunada, H.; Otsuka, A. Effect of water content on sticking during compression. Chem. Pharm. Bull. 1997, 45, 706–709. [Google Scholar] [CrossRef] [Green Version]
- Takasaki, H.; Yonemochi, E.; Ito, M.; Wada, K.; Terada, K. The importance of binder moisture content in Metformin HCL high-dose formulations prepared by moist aqueous granulation (MAG). Results Pharma Sci. 2015, 5, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanchard, R. How Tablet Formulation Can Impact Production. 3 September 2019. Available online: https://www.europeanpharmaceuticalreview.com/article/98042/how-tablet-formulation-can-impact-production (accessed on 30 October 2021).
- Leuenberger, H.; Rohera, B.D. Fundamentals of Powder Compression. I. The Compactibility and Compressibility of Pharmaceutical Powders. Pharm. Res. 1986, 3, 12–22. [Google Scholar] [CrossRef]
- DeCrosta, M.T.; Schwartz, J.B.; Wigent, R.J.; Marshall, K. Thermodynamic analysis of compact formation; compaction, unloading, and ejection I. Design and development of a compaction calorimeter and mechanical and thermal energy determinations of powder compaction. Int. J. Pharm. 2000, 198, 113–134. [Google Scholar] [CrossRef]
- Ketocaines, J.; Ilkka, J.; Parone, P. Temperature changes during tabletting measured using infrared thermoviewer. Int. J. Pharm. 1993, 92, 157–166. [Google Scholar] [CrossRef]
- Wurster, D.E.; Buckner, I.S. Characterizing compaction-induced thermodynamic changes in a common pharmaceutical excipient. J. Pharm. Sci. 2012, 101, 2960–2967. [Google Scholar] [CrossRef]
- Rowlings, C.E.; Wurster, D.E.; Ramsey, P.J. Calorimetric analysis of powder compression: II: The relationship between energy terms measured with a compression calorimeter and tableting behavior. Int. J. Pharm. 1995, 116, 191–200. [Google Scholar] [CrossRef]
- Krok, A.; Mirtic, A.; Reynolds, G.K.; Schiano, S.; Roberts, R.; Wu, C.-Y. An experimental investigation of temperature rises during compaction of pharmaceutical powders. Int. J. Pharm. 2016, 513, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Zavaliangos, A.; Galen, S.; Cunningham, J.; Winstead, D. Temperature evolution during compaction of pharmaceutical powders. J. Pharm. Sci. 2008, 97, 3291–3304. [Google Scholar] [CrossRef] [PubMed]
- Pitt, K.; Sinka, C. Chapter 16. Tabletting. In Handbook of Powder Technology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 11, pp. 735–778. [Google Scholar] [CrossRef]
- Klinzing, G.R.; Troup, G.M. Modeling the air pressure increase within a powder bed during compression—A step toward Understanding tablet defects. J. Pharm. Sci. 2019, 108, 1991–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wünsch, I.; Finke, J.H.; John, E.; Juhnke, M.; Kwade, A. A mathematical approach to consider solid compressibility in the compression of pharmaceutical powders. Pharmaceutics 2019, 11, 121. [Google Scholar] [CrossRef] [Green Version]
- Carman, P.G. Fluid flow through granular beds. Trans. Inst. Chem. Eng. 1937, 15, 150–166. [Google Scholar] [CrossRef]
- Dos Santos, G.H.; Mendes, N. Combined Heat, Air and Moisture (HAM) Transfer Model for Porous Building Materials. J. Build. Phys. 2009, 32, 1744–2591. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; Environmental science series; Elsevier: New York, NY, USA, 1972; ISBN 978-0-186-65675-5. [Google Scholar]
- Pedersen, C.R. Prediction of moisture transfer in building constructions. Build. Environ. 1992, 27, 387–397. [Google Scholar] [CrossRef]
- Luikov, A.V. Heat and Mass Transfer in Capillary Porous Bodies; Pergamon Press: Oxford, UK, 1966; ISBN 9781483225685. [Google Scholar]
- Philip, J.R.; de Vries, D.A. Moisture movement in porous media under temperature gradients, trans. Am. Geophys. Union 1957, 38, 222–232. [Google Scholar] [CrossRef]
- Hagentoft, C.E.; Kalagasidis, A.S.; Adl-Zarrabi, B.; Roles, S.; Carmeliet, J.; Hens, H.; Grunewald, J.; Funk, M.; Becker, R.; Shamir, D.; et al. Assessment method of numerical prediction models for combined heat, air and moisture transfer in building components: Benchmarks for one-dimensional cases. J. Build. Phys. 2004, 27, 327–352. [Google Scholar] [CrossRef]
- Zavaliangos, A.; Katz, J.M.; Daurio, D.; Johnson, M.; Pirjanian, A.; Alvarez-Nunez, F. Prediction of air entrapment in tableting: An approximate solution. J. Pharm. Sci. 2017, 106, 3604–3612. [Google Scholar] [CrossRef] [Green Version]
- El-Sabaawi, M.; Pei, D.C.T. Moisture isotherms of hygroscopic porous solids. Ind. Eng. Chem. Fundam. 1977, 16, 321–326. [Google Scholar] [CrossRef]
- Kremer, D. A numerical investigation of air flow during tablet compression. Chem. Eng. Sci. 2006, 61, 7963–7978. [Google Scholar] [CrossRef]
- COMSOL Multiphysics 5.4. Evaporation in Porous Media with Large Evaporation Rates. Available online: https://www.comsol.com/model/evaporation-in-porous-media-with-large-evaporation-rates-33731 (accessed on 30 October 2021).
- Maliki, M.; Laredj, N.; Bendani, K.; Missoum, H.; Mostaganem, A.I.B.O. University Abdelhamid Ibn Badis of Mostaganem Two-Dimensional Transient Modeling of Energy and Mass Transfer in Porous Building Components using COMSOL Multiphysics. J. Appl. Fluid Mech. 2017, 10, 319–328. [Google Scholar] [CrossRef]
- ASTM D7481–18; Standard Test Methods for Determining Loose and Tapped Bulk Densities of Powders using a Graduated Cylinder. Annual Book of ASTM Standards. ASTM: West Conshehoken, PA, USA, 2018. [CrossRef]
- Rodríguez−Ramírez, J.; Méndez−Lagunas, L.; López−Ortiz, A.; Sandoval, T.S. True density and apparent density during the drying process for vegetables and fruits: A review. J. Food Sci. 2012, 77, 12. [Google Scholar] [CrossRef] [PubMed]
- Hapgood, K.P.; Litster, J.D.; Biggs, S.R.; Howes, T. Drop penetration into porous powder beds. J. Colloid Interface Sci. 2002, 253, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Am Ende, D.J. Chemical Engineering in the Pharmaceutical Industry: R&D to Manufacturing; John Wiley & Sons: Hoboken, NJ, USA, 2011; ISBN 978-0-470-88222-1. [Google Scholar]
- ASTM E96/E96M−16; Standard Test Methods for Water Vapor Transmission of Materials. Annual Book of ASTM Standards. ASTM: West Conshehoken, PA, USA, 2016. [CrossRef]
- ASTM D6539–13; Standard Test Method for Measurement of the Permeability of Unsaturated Porous Materials by Flowing Air. Annual Book of ASTM Standards. ASTM: West Conshehoken, PA, USA, 2013. [CrossRef]
- Klinzing, G.R.; Zavaliangos, A. A simplified model of moisture transport in hydrophilic porous media with applications to pharmaceutical tablets. J. Pharm. Sci. 2016, 105, 2410–2418. [Google Scholar] [CrossRef]
- Vincenti, W.G.; Kruger, C.H. Introduction to Physical Gas Dynamics; Krieger Publishing Company: Malabar, FL, USA, 1965; p. 414. ISBN 0-88275-309-6. [Google Scholar]
- Woodside, W. Water vapor permeability of porous media. Can. J. Phys. 1959, 37, 413–416. [Google Scholar] [CrossRef]
- Edenholm, H. Moisture Movement and Moisture Distribution in the Walls of Buildings; National Research Council of Canada: Ottawa, ON, Canada, 1952. [CrossRef]
- Penman, H.L. Gas and vapour movements in the soil: I. The diffusion of vapours through porous solids. J. Agric. Sci. 1940, 30, 437–462. [Google Scholar] [CrossRef]
- Yang, B.; Wei, C.; Yang, Y.; Wang, Q.; Li, S. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration. Drug Dev. Ind. Pharm. 2018, 44, 1417–1425. [Google Scholar] [CrossRef]
- Quenard, D.; Sallee, H. Water Vapor Adsorption and Transfer in Microporous Building Materials. a Network Simulation. In Proceedings of the Buildings Simulation Conference, Nice, France, 20–22 August 1991; pp. 31–36. Available online: http://www.ibpsa.org/proceedings/BS1991/BS91_031_36.pdf (accessed on 30 October 2021).
- Westermarck, S. Mercury porosimetry of microcrystalline cellulose tablets: Effect of scanning speed and moisture. Eur. J. Pharm. Biopharm. 2000, 50, 319–325. [Google Scholar] [CrossRef]
- Denesuk, M.; Smith, G.L.; Zelinski, B.J.J.; Kreidl, N.J.; Uhlmann, D.R. Capillary penetration of liquid droplets into porous materials. J. Colloid Interface Sci. 1993, 158, 114–120. [Google Scholar] [CrossRef]
- Marston, J.O.; Thoroddsen, S.T.; Ng, W.K.; Tan, R.B.H. Experimental study of liquid drop impact onto a powder surface. Powder Technol. 2010, 203, 223–236. [Google Scholar] [CrossRef]
- Eichheimer, P.; Thielmann, M.; Fujita, W.; Golabek, G.J.; Nakamura, M.; Okumura, S.; Nakatani, T.; Kottwitz, M.O. Combined numerical and experimental study of microstructure and permeability in porous granular media. Solid Earth 2020, 11, 1079–1095. [Google Scholar] [CrossRef]
- Peng, X.; Boming, Y. Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry. Adv. Water Resour. 2008, 31, 74–81. [Google Scholar] [CrossRef]
- Kaviany, M. Principles of Heat Transfer in Porous Media, 2nd ed.; Springer: New York, NY, USA, 1995. [Google Scholar] [CrossRef]
- Traxler, R.N.; Baum, L.A.H. Permeability of compacted powders determination of average pore size. Physics 1936, 7, 9. [Google Scholar] [CrossRef]
- Bayles, G.; Klinzing, G.; Chiang, S. Fractal mathematics applied to flow in porous systems. Part. Part. Syst. Charact. 1989, 6, 168–175. [Google Scholar] [CrossRef]
- Pape, H.; Clauser, C.; Iffland, J. Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model. Pure Appl. Geophys. 2000, 157, 603–619. [Google Scholar] [CrossRef]
- Civan, F. Scale effect on porosity and permeability: Kinetics, model and correlation. AIChE J. 2001, 47, 271–287. [Google Scholar] [CrossRef]
- Costa, A. Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys. Res. Lett. 2006, 33, L02318. [Google Scholar] [CrossRef]
- Zhang, D.; Tian, Z.; Chen, Z.; Wu, D.; Zhou, G.; Zhang, S.; Wang, M. Compaction effects on permeability of spherical packing. Eng. Comput. 2020, 37, 3079–3096. [Google Scholar] [CrossRef]
- Huber, M.; Harvey, A. Viscosity of Gases, CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Helium, Jefferson Lab, U.S. Department of Energy. Available online: https://pubchem.ncbi.nlm.nih.gov/element/Helium#section=Density&fullscreen=true (accessed on 30 October 2021).
- Lide, D.R.; Kehiaian, H.V. CRC Handbook of Thermophysical and Thermochemical Data; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar] [CrossRef]
P (×106 Pa) | L (×10−3 m) | R (×10−2 m) | V (×10−6 m3) | ρapp (kg/m3) | ρtrue (kg/m3) | RD (-) | ε (-) |
---|---|---|---|---|---|---|---|
LP | - | - | - | 279 (4.15) | 1550 (15) | 0.18 (0.01) | 0.82 (0.01) |
20 | 10.21 (0.25) | 1.25 (0.04) | 5.16 (0.12) | 1074.41 (2.65) | 0.69 (0.02) | 0.31 (0.0) | |
40 | 9.70 (0.20) | 4.91 (0.10) | 1142.31 (3.45) | 0.74 (0.02) | 0.26 (0.0) | ||
60 | 9.31 (0.23) | 4.71 (0.05) | 1192.15 (2.16) | 0.77 (0.02) | 0.23 (0.0) | ||
80 | 8.97 (0.17) | 4.54 (0.09) | 1230.27 (3.05) | 0.79 (0.02) | 0.21 (0.0) | ||
100 | 8.63 (0.10) | 4.37 (0.12) | 1282.71 (1.97) | 0.83 (0.02) | 0.17 (0.0) | ||
120 | 8.44 (0.14) | 4.27 (0.08) | 1309.82 (1.65) | 0.84 (0.02) | 0.16 (0.0) | ||
140 | 8.06 (0.11) | 4.08 (0.07) | 1373.60 (4.20) | 0.89 (0.02) | 0.11 (0.0) | ||
160 | 7.94 (0.07) | 4.02 (0.03) | 1395.32 (3.71) | 0.90 (0.02) | 0.10 (0.0) | ||
180 | 7.93 (0.09) | 4.02 (0.06) | 1409.12 (4.45) | 0.91 (0.02) | 0.09 (0.0) | ||
200 | 7.64 (0.10) | 3.87 (0.04) | 1447.21 (2.07) | 0.93 (0.02) | 0.07 (0.0) |
P (×106 Pa) | tp (s) | Θ (°) | γ (×10−2 j/m2) | Vd (×10−9 m3) | RD (-) | ε (-) | μ (×10−3 Pa·s) | r (×10−6 m) |
---|---|---|---|---|---|---|---|---|
20 | 0.15 (0.00) | 41 (3.5) | 7.20 | 2.0 (0.6) | 0.69 (0.02) | 0.31 (0.0) | 1 | 2.83 (0.05) |
40 | 0.45 (0.03) | 0.74 (0.02) | 0.26 (0.0) | 1 | 1.25 (0.05) | |||
60 | 0.72 (0.07) | 0.77 (0.02) | 0.23 (0.0) | 1 | 1.03 (0.06) | |||
80 | 1.29 (0.03) | 0.79 (0.02) | 0.21 (0.0) | 1 | 0.76 (0.01) | |||
100 | 1.70 (0.07) | 0.83 (0.02) | 0.17 (0.0) | 1 | 0.75 (0.02) | |||
120 | 2.78 (0.26) | 0.84 (0.02) | 0.16 (0.0) | 1 | 0.68 (0.05) | |||
140 | 3.88 (0.19) | 0.89 (0.02) | 0.11 (0.0) | 1 | 0.76 (0.02) | |||
160 | 4.58 (0.40) | 0.90 (0.02) | 0.10 (0.0) | 1 | 0.69 (0.04) | |||
180 | 6.34 (0.51) | 0.91 (0.02) | 0.09 (0.0) | 1 | 0.72 (0.03) | |||
200 | 8.48 (0.59) | 0.93 (0.02) | 0.07 (0.0) | 1 | 0.74 (0.04) |
P (×106 Pa) | RD (-) | ε (-) | Kp (×10−16 m2) |
---|---|---|---|
60 | 0.77 (0.02) | 0.23 (0.0) | 97.6 (0.6) |
80 | 0.79 (0.02) | 0.21 (0.0) | 12.3 (0.1) |
100 | 0.83 (0.02) | 0.17 (0.0) | 12 (0.1) |
120 | 0.85 (0.02) | 0.15 (0.0) | 3.47 (0.01) |
140 | 0.89 (0.02) | 0.11 (0.0) | 2.36 (0.01) |
160 | 0.90 (0.02) | 0.10 (0.0) | 1.54 (0.02) |
180 | 0.91 (0.02) | 0.09 (0.0) | 1.50 (0.01) |
200 | 0.93 (0.02) | 0.07 (0.0) | 1.39 (0.01) |
P (×106 Pa) | RD (-) | ε (-) | Kp (×10−16 m2) | μ (×10−5 Pa·s) [65] | g (m/s2) | ρ (kg/m3) [66] | K (×10−11 m/s) |
---|---|---|---|---|---|---|---|
60 | 0.77 (0.02) | 0.23 (0.0) | 97.6 (0.6) | 1.99 | 9.8 | 0.17 | 80 (0.5) |
80 | 0.79 (0.02) | 0.21 (0.0) | 12.3 (0.1) | 10.10 (0.10) | |||
100 | 0.83 (0.02) | 0.17 (0.0) | 12 (0.1) | 9.87 (0.10) | |||
120 | 0.85 (0.02) | 0.15 (0.0) | 3.47 (0.01) | 2.84 (0.10) | |||
140 | 0.89 (0.02) | 0.11 (0.0) | 2.37 (0.01) | 1.94 (0.51) | |||
160 | 0.90 (0.02) | 0.10 (0.0) | 1.54 (0.02) | 1.26 (0.10) | |||
180 | 0.91 (0.02) | 0.09 (0.0) | 1.50 (0.01) | 1.23 (0.10) | |||
200 | 0.93 (0.02) | 0.07 (0.0) | 1.39 (0.01) | 1.14 (0.10) |
RD (-) | ε (-) | r (×10−6 m) | PB (×105 Pa) | R (J/(K·mol)) | T (K) | M (kg/mol) | λ (×10−7 m) | Kn (-) |
---|---|---|---|---|---|---|---|---|
0.69 (0.02) | 0.31 (0.0) | 2.83 (0.05) | 1.01 | 8.314 | 293.15 | 0.018 | 5.92 | 0.21 |
0.74 (0.02) | 0.26 (0.0) | 1.25 (0.05) | 1.02 | 8.314 | 293.15 | 0.018 | 5.92 | 0.47 |
0.77 (0.02) | 0.23 (0.0) | 1.03 (0.06) | 1.03 | 8.314 | 293.15 | 0.018 | 5.92 | 0.58 |
0.79 (0.02) | 0.21 (0.0) | 0.76 (0.01) | 1.04 | 8.314 | 293.15 | 0.018 | 5.92 | 0.84 |
0.83 (0.02) | 0.17 (0.0) | 0.75 (0.02) | 1.05 | 8.314 | 293.15 | 0.018 | 5.92 | 0.78 |
0.84 (0.02) | 0.16 (0.0) | 0.68 (0.05) | 1.06 | 8.314 | 293.15 | 0.018 | 5.92 | 1.02 |
0.89 (0.02) | 0.11 (0.0) | 0.76 (0.02) | 1.07 | 8.314 | 293.15 | 0.018 | 5.92 | 0.78 |
0.90 (0.02) | 0.10 (0.0) | 0.69 (0.04) | 1.08 | 8.314 | 293.15 | 0.018 | 5.92 | 0.70 |
0.91 (0.02) | 0.09 (0.0) | 0.72 (0.03) | 1.09 | 8.314 | 293.15 | 0.018 | 5.92 | 0.82 |
0.93 (0.02) | 0.07 (0.0) | 0.74 (0.04) | 1.10 | 8.314 | 293.15 | 0.018 | 5.92 | 0.63 |
ε (-) | r (×10−6 m) | R (J/(K·mol)) | T (K) | M (kg/mol) | D0 (×10−5 m2/s) [67] | Dk (×10−4 m2/s) | Dtrans (×10−5 m2/s) |
---|---|---|---|---|---|---|---|
0.31 (0.0) | 2.83 (0.05) | 8.31 | 293.15 | 0.02 | 2.42 | 11.10 | 2.37 (0.0) |
0.26 (0.0) | 1.25 (0.05) | 4.89 | 2.31 (0.0) | ||||
0.23 (0.0) | 1.03 (0.06) | 4.02 | 2.28 (0.01) | ||||
0.21 (0.0) | 0.76 (0.01) | 2.76 | 2.23 (0.0) | ||||
0.17 (0.0) | 0.75 (0.02) | 2.95 | 2.24 (0.0) | ||||
0.16 (0.0) | 0.68 (0.05) | 2.27 | 2.19 (0.0) | ||||
0.11 (0.0) | 0.76 (0.02) | 2.98 | 2.24 (0.0) | ||||
0.10 (0.0) | 0.69 (0.04) | 3.31 | 2.26 (0.01) | ||||
0.09 (0.0) | 0.72 (0.03) | 2.82 | 2.23 (0.01) | ||||
0.07 (0.0) | 0.74 (0.04) | 3.67 | 2.27 (0.0) |
ε (-) | r (×10−6 m) | Kp (×10−16 m2) | Kair (×10−10 s) | D (×10−5 m2/s) | KvW (×10−10 s) (Woodside) | KvO (×10−10 s) (This Study) | KvQS (×10−7 s) QS Model |
---|---|---|---|---|---|---|---|
0.23 (0.0) | 1.03 (0.06) | 97.6 (0.6) | 1.92 | 2.28 (0.01) | 0.32 (0.0) | 4.3 (1.50) | 1.30 (0.05) |
0.21 (0.0) | 0.76 (0.01) | 12.3 (0.1) | 2.23 (0.0) | 0.29 (0.0) | 0.55 (1.80) | 1.17 (0.04) | |
0.17 (0.0) | 0.75 (0.02) | 12 (0.1) | 2.24 (0.0) | 0.24 (0.0) | 0.54 (0.01) | 1.18 (0.03) | |
0.11 (0.0) | 0.76 (0.02) | 2.37 (0.01) | 2.24 (0.0) | 0.15 (0.0) | 0.11 (0.0) | 1. 18 (0.03) | |
0.10 (0.0) | 0.69 (0.04) | 1.54 (0.02) | 2.22 (0.01) | 1.32 (0.0) | 0.07 (0.03) | 1.13 (0.03) | |
0.09 (0.0) | 0.72 (0.03) | 1.50 (0.01) | 2.23 (0.01) | 1.19 (0.0) | 0.07 (0.02) | 1.15 (0.01) | |
0.07 (0.0) | 0.74 (0.04) | 1.39 (0.01) | 2.27 (0.00) | 0.09 (0.0) | 0.06 (0.0) | 1.17 (0.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumbogle, K.; Gitzhofer, F.; Abatzoglou, N. Moisture Transport Coefficients Determination on a Model Pharmaceutical Tablet. Processes 2022, 10, 254. https://doi.org/10.3390/pr10020254
Koumbogle K, Gitzhofer F, Abatzoglou N. Moisture Transport Coefficients Determination on a Model Pharmaceutical Tablet. Processes. 2022; 10(2):254. https://doi.org/10.3390/pr10020254
Chicago/Turabian StyleKoumbogle, Komlan, François Gitzhofer, and Nicolas Abatzoglou. 2022. "Moisture Transport Coefficients Determination on a Model Pharmaceutical Tablet" Processes 10, no. 2: 254. https://doi.org/10.3390/pr10020254
APA StyleKoumbogle, K., Gitzhofer, F., & Abatzoglou, N. (2022). Moisture Transport Coefficients Determination on a Model Pharmaceutical Tablet. Processes, 10(2), 254. https://doi.org/10.3390/pr10020254