Improved Production and Insulinotropic Properties of Exopolysaccharide by Phellinus igniarius in Submerged Cultures
Abstract
:1. Introduction
2. Results
2.1. Effects of Surfactants in Shake Flask Cultures
2.2. Effects of Different Tween 80 Concentrations in Shake Flask Cultures
2.3. Effects of Different Tween 80 Concentrations in Stirred Tank Bioreactor
2.4. Scale-Up Fermentation
2.5. Number-Average Molecular Weights and Protein Contents of Polysaccharides
2.6. RINm5F Cell Proliferation
2.7. RINm5F Insulin Secretion
3. Discussion
4. Materials and Methods
4.1. Microorganism and Seed Culture
4.2. Shake-Flask Cultures
4.3. Stirred-Tank Bioreactor Culture
4.4. Molecular Weights and Protein Contents of Polysaccharides
4.5. RINm5F Cell Culture
4.6. Analysis of RINm5F Cell Proliferation
4.7. Analysis of Insulin Secretion by RINm5F Cell
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Wasser, S. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar] [PubMed]
- Balan, V.; Munafo, J.P., Jr.; Pattathil, S.; Merritt, B.B.; Venketachalam, S.; Ng, W.O. Protocols to evaluate the nutritional and potential health benefits of ediblem mushrooms. Curr. Biotechnol. 2018, 7, 34–58. [Google Scholar] [CrossRef]
- Cör, D.; Knez, Ž.; Hrnčič, M.K. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A review. Molecules 2018, 23, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lung, M.Y.; Huang, W.Z. Production, purification and tumor necrosis factor-α (TNF-α) release capability of exopolysaccharide from Laetiporus sulphureus (Bulliard: Fries) Bondartsev &Singer in submerged cultures. Process Biochem. 2011, 46, 433–439. [Google Scholar]
- Phan, C.W.D.; Naidu, P.M.; Wong, K.H.; Sabaratnam, V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: Diversity, metabolite, and mechanism. Crit. Rev. Biotechnol. 2015, 35, 355–368. [Google Scholar] [CrossRef]
- Lung, M.Y.; Chang, Y.C. Antioxidant Properties of the Edible Basidiomycete Armillaria mellea in Submerged Cultures. Int. J. Mol. Sci. 2011, 12, 6367–6384. [Google Scholar] [CrossRef] [Green Version]
- Ianni, F.; Blasi, F.; Angelini, P.; Simone, S.C.D.; Flores, G.A.; Cossignani, L.; Venanzoni, R. Extraction optimization by experimental design of bioactives from Pleurotus ostreatus and evaluation of antioxidant and antimicrobial activities. Processes 2021, 9, 743. [Google Scholar] [CrossRef]
- Wasser, S.P. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J. 2014, 37, 345–356. [Google Scholar] [CrossRef]
- Angelini, P.; Venanzoni, R.; Flores, G.A.; Tirillini, B.; Orlando, G.; Recinella, L.; Chiavaroli, A.; Brunetti, L.; Leone, S.; Di Simone, S.C.; et al. Evaluation of Antioxidant, Antimicrobial and Tyrosinase Inhibitory Activities of Extracts from Tricholosporum goniospermum, an Edible Wild Mushroom. Antibiotics 2020, 9, 513. [Google Scholar] [CrossRef]
- Angelini, P.; Girometta, C.; Tirillini, B.; Moretti, S.; Covino, S.; Cipriani, M.; D’Ellena, E.; Angeles, G.; Federici, E.; Savino, E.; et al. A comparative study of the antimicrobial and antioxidant activities of Inonotu shispidus fruit and their mycelia extracts. Int. J. Food Prop. 2019, 22, 768–783. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, T. The Extraction and Development of Antitumor-Active Polysaccharides from Medicinal Mushrooms in Japan (Review). Int. J. Med. Mushrooms 1999, 1, 9–29. [Google Scholar] [CrossRef]
- Chen, L.; Pan, J.; Li, X.; Zhou, Y.; Meng, Q.; Wang, Q. Endo-polysaccharide of Phellinus igniarius exhibited anti-tumor effect through enhancement of cell mediated immunity. Int. Immunopharmacol. 2011, 11, 255–259. [Google Scholar] [CrossRef]
- Li, S.C.; Yang, X.M.; Ma, H.L.; Yan, J.K.; Guo, D.Z. Purification, characterization and antitumor activity of polysaccharides extracted from Phellinus igniarius mycelia. Carbohydr. Polym. 2015, 133, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Lung, M.Y.; Tsai, J.C.; Huang, P.C. Antioxidant Properties of Edible Basidiomycete Phellinus igniarius in Submerged Cultures. J. Food Sci. 2010, 75, E18–E24. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Wang, W.; Sun, W.; Wang, M.; Zhang, N.; Yu, S. Antitumor and immunomodulating activities of six Phellinus igniarius polysaccharides of different origins. Exp. Ther. Med. 2017, 14, 4627–4632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Yan, M.; Zhu, J.; Xu, X. Enhancement of exo-polysaccharide production and antioxidant activity in submerged cultures of Inonotus obliquusby lignocellulose decomposition. J. Ind. Microbiol. Biotechnol. 2011, 38, 291–298. [Google Scholar] [CrossRef]
- Yang, H.L.; Wu, T.X.; Zhang, K.C. Enhancement of mycelial growth and polysaccharide production in Ganoderma lucidum (the Chinese medicinal fungus, ‘Lingzhi’) by the addition of ethanol. Biotechnol. Lett. 2004, 26, 841–844. [Google Scholar] [CrossRef]
- Yang, X.; Yang, Y.; Zhang, Y.; He, J.; Xie, Y. Enhanced exopolysaccharide production in submerged fermentation of Ganoderma lucidum by Tween 80 supplementation. Bioprocess. Biosyst. Eng. 2021, 44, 47–56. [Google Scholar] [CrossRef]
- Liu, Y.S.; Wu, J.Y. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. J. Ind. Microbiol. Biotechnol. 2012, 39, 623–628. [Google Scholar] [CrossRef]
- Hwang, H.S.; Lee, S.H.; Baek, Y.M.; Kim, S.W.; Jeong, Y.K.; Yun, J.W. Production of extracellular polysaccharides by submerged mycelial culture of Laetiporus sulphureus var. miniatus and their insulinotropic properties. Appl. Microbiol. Biotechnol. 2008, 78, 419–429. [Google Scholar] [CrossRef]
- Hsieh, C.; Wang, H.L.; Chen, C.C.; Hsu, T.H.; Tseng, M.T. Effect of plant oil and surfactant on the production of mycelial biomass and polysaccharides in submerged culture of Grifola frondose. Biochem. Eng. J. 2008, 38, 198–205. [Google Scholar] [CrossRef]
- Li, Q.; Lei, Y.; Hu, G.; Lei, Y.; Dan, D. Effects of Tween 80 on the liquid fermentation of Lentinus edodes. Food Sci. Biotechnol. 2018, 27, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Zhanga, M.Z.; Cuia, S.W.; Cheung, P.C.K.; Wang, Q. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Technol. 2007, 18, 4–19. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin-Phenol reagents. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Gray, A.M.; Flatt, P.R. Insulin-releasing and insulin-like activity of Agaricus campestris (mushroom). J. Endocrinol. 1998, 157, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Praz, G.A.; Halban, P.A.; Wollheim, C.B.; Blondel, B.; Strauss, A.J.; Renold, A.E. Regulation of immunoreactive-insulin release from a rat cell line (RINm5F). Biochem. J. 1983, 210, 345–352. [Google Scholar] [CrossRef] [Green Version]
conc. (g L−1) | μa | QXb | QPc | Xmaxd | Pmaxe | YP/Xg | YX/Sh | YP/Si | t j(d) |
---|---|---|---|---|---|---|---|---|---|
(d−1) | (gL−1d−1) | (mgL−1d−1) | (mgmL−1) | (mgmL−1) | (mgg−1) | (gg−1) | (mgg−1) | ||
0 | 0.45 | 0.42 | 15.75 | 2.14 | 0.11 | 51.40 | 0.22 | 11.24 | 5 |
0.2 | 0.48 | 0.43 | 16.93 | 3.02 | 0.12 | 39.28 | 0.33 | 12.83 | 7 |
0.4 | 0.51 | 0.38 | 17.26 | 2.65 | 0.14 | 52.00 | 0.27 | 13.89 | 7 |
0.6 | 0.57 | 0.32 | 23.04 | 2.55 | 0.18 | 72.22 | 0.31 | 22.06 | 8 |
0.8 | 0.41 | 0.18 | 21.73 | 1.41 | 0.15 | 107.58 | 0.16 | 17.43 | 8 |
1 | 0.42 | 0.10 | 18.10 | 0.93 | 0.14 | 156.32 | 0.11 | 16.59 | 9 |
1.2 | 0.43 | 0.11 | 17.82 | 0.87 | 0.12 | 142.91 | 0.09 | 13.14 | 8 |
0.6 (20L) | 0.30 | 0.42 | 13.26 | 4.65 | 0.15 | 31.36 | 0.47 | 14.61 | 11 |
Samples | Protein/Polysaccharide (%, w/w) | Mn (Da) |
---|---|---|
Exopolysaccharide | 3.68 | 4.87 × 105 |
Intracellular polysaccharide | 3.02 | 1.71 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lung, M.-Y.; Deng, K.-W. Improved Production and Insulinotropic Properties of Exopolysaccharide by Phellinus igniarius in Submerged Cultures. Processes 2022, 10, 310. https://doi.org/10.3390/pr10020310
Lung M-Y, Deng K-W. Improved Production and Insulinotropic Properties of Exopolysaccharide by Phellinus igniarius in Submerged Cultures. Processes. 2022; 10(2):310. https://doi.org/10.3390/pr10020310
Chicago/Turabian StyleLung, Ming-Yu, and Kai-Wen Deng. 2022. "Improved Production and Insulinotropic Properties of Exopolysaccharide by Phellinus igniarius in Submerged Cultures" Processes 10, no. 2: 310. https://doi.org/10.3390/pr10020310
APA StyleLung, M.-Y., & Deng, K.-W. (2022). Improved Production and Insulinotropic Properties of Exopolysaccharide by Phellinus igniarius in Submerged Cultures. Processes, 10(2), 310. https://doi.org/10.3390/pr10020310