Reduction of Potential-Induced-Degradation of p-Type PERC Solar Cell Modules by an Ion-Diffusion Barrier Layer Underneath the Front Glass
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of the ALD-Grown Al2O3 for Si-Solar Cell Usage
3.1.1. Uniform Growth of Al2O3 with Amorphous Structure
3.1.2. Optical Transmittance and Passivation Properties of Al2O3 Thin Films
3.2. Accelerated PID Test with Light I-V and Electroluminescent Measurement
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saga, T. Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater. 2010, 2, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Tsoutsos, T.; Frantzeskaki, N.; Gekas, V. Environmental impacts from the solar energy technologies. Energy Policy 2005, 33, 289–296. [Google Scholar] [CrossRef]
- Gul, M.; Kotak, Y.; Muneer, T. Review on recent trend of solar photovoltaic technology. Energy Explor. Exploit. 2016, 34, 485–526. [Google Scholar] [CrossRef] [Green Version]
- Battaglia, C.; Cuevas, A.; Wolf, S.D. High-efficiency crystalline silicon solar cells: Status and perspectives. Energy Environ. Sci. 2016, 9, 1552–1576. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.M.; Al-Jassim, M.; Metzger, W.K.; Glunz, S.W.; Verlinden, P.; Xiong, G.; Mansfield, L.M.; Stanbery, B.J.; Zhu, K.; Yan, Y.; et al. The 2020 photovoltaic technologies roadmap. J. Phys. D Appl. Phys. 2020, 53, 493001. [Google Scholar] [CrossRef]
- Chaar, L.E.; Iamont, L.A.; Zein, N.E. Review of photovoltaic technologies. Renew. Sust. Energy Rev. 2011, 15, 2165–2175. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Nagel, H.; Metz, A.; Wangemann, K. Crystalline Si solar cells and modules featuring excellent stability against potential-induced degradation. In Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 5–9 September 2011. [Google Scholar]
- Harvey, S.P.; Aguiar, J.A.; Hacke, P.; Guthrey, H.; Johnston, S.; Al-Jassim, M. Sodium Accumulation at Potential-Induced Degradation Shunted Areas in Polycrystalline Silicon Modules. IEEE J. Photovoltaics 2016, 6, 1440–1445. [Google Scholar] [CrossRef]
- Lausch, D.; Naumann, V.; Graff, A.; Hähnel, A.; Breitenstein, O.; Hagendorf, C.; Bagdahn, J. Sodium Outdiffusion from Stacking Faults as Root Cause for the Recovery Process of Potential-induced degradation (PID). Energy Procedia 2014, 55, 486–493. [Google Scholar] [CrossRef]
- Jaeckel, B.; Cosic, M.; Arp, J. PID Effect of c-Si Modules: Study of Degradation and Recovery to More Closely Mimic Field Behavior. Isr. J. Chem. 2015, 55, 1091–1097. [Google Scholar] [CrossRef]
- Bora, B.; Mondal, S.; Prasad, B.; Sastry, O.S.; Bangar, M.; Tripathi, A.K.; Banerjee, C. Accelerated stress testing of potential induced degradation susceptibility of PV modules under different climatic conditions. Sol. Energy 2021, 223, 158–167. [Google Scholar] [CrossRef]
- Xiao, C.; Jiang, C.S.; Harvey, S.P.; Sulas, D.; Chen, X.; Liu, J.; Pan, J.; Moutinho, H.; Norman, A.; Hacke, P.; et al. Large-Area Material and junction Damage in c-Si solar Cells by Potential-Induced Degradation. Sol. RRL 2019, 3, 1800303. [Google Scholar] [CrossRef]
- Naumann, V.; Brzuska, C.; Werner, M.; Großer, S.; Hagendorf, C. Investigations on the formation of stacking fault-like PID-shunts. Energy Procedia 2016, 92, 569–575. [Google Scholar] [CrossRef]
- Luo, W.; Khoo, Y.S.; Hacke, P.; Naumann, V.; Lausch, D.; Harvey, S.P.; Singh, J.P.; Chai, J.; Wang, Y.; Aberle, A.G.; et al. Potential-induced degradation in photovoltaic modules: A critical review. Energy Environ. Sci. 2017, 10, 43–68. [Google Scholar] [CrossRef] [Green Version]
- Pingel, S.; Frank, O.; Winkler, M.; Daryan, S.; Geipel, T.; Hoehne, H.; Berghold, J. Potential Induced Degradation of solar cells and panels. In Proceedings of the 2010 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, USA, 20–25 June 2010. [Google Scholar]
- Naumann, V.; Lausch, D.; Hähnel, A.; Bauer, J.; Breitenstein, O.; Graff, A.; Werner, M.; Swatek, S.; Großer, S.; Bagdahn, J.; et al. Explanation of potential-induced degradation of the shunting type by Na decoration of stacking faults in Si solar cells. Sol. Energy Mater. Sol. Cells 2014, 120, 383–389. [Google Scholar] [CrossRef]
- Bae, S.H.; Oh, W.W.; Kim, S.M.; Kim, Y.D.; Park, S.G.; Kang, Y.M.; Lee, H.S.; Kim, D.W. Potential Induced Degradation (PID) of Crystalline Silicon Solar Modules. Korean J. Mater. Res. 2014, 24, 326–337. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Dauksher, B.; Bowden, S.; Tamizhmani, G.; Hacke, P.; D’Amico, J. Further studies on the Effect of SiNx Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation. IEEE J. Photovoltaics 2017, 7, 437–443. [Google Scholar] [CrossRef]
- Gou, X.; Li, X.; Zhou, S.; Wang, S.; Fan, W.; Huang, Q. PID Testing Method Suitable for Process Control of Solar Cells Mass Production. Int. J. Photoenergy 2015, 2015, 863248. [Google Scholar] [CrossRef]
- Lu, L.; Shen, H.; Jiang, F.; Yang, C.; Lin, L. The enhanced conductivity of AZO thin films on soda lime glass with an ultrathin Al2O3 buffer layer. Phys. B Condens. Matter 2010, 405, 3320–3323. [Google Scholar] [CrossRef]
- Hara, K.; Ichinose, H.; Murakami, T.N.; Masuda, A. Crystalline Si photovoltaic modules based on TiO2-coated cover glass against potential-induced degradation. RSC Adv. 2014, 4, 44291–44295. [Google Scholar] [CrossRef]
- Kapur, J.; Stika, K.M.; Westphal, C.S.; Norwood, J.L.; Hamzavytehrany, B. Prevention of potential-induced degradation with thin ionomer film. IEEE J. Photovoltaics 2014, 5, 219–223. [Google Scholar] [CrossRef]
- Jung, D.W.; Oh, K.S.; Jang, E.J.; Chan, S.I.; Ryu, S.W. Thickness Effect of SiOx Layer Inserted between Anti-Reflection Coating and p-n Junction on Potential-Induced Degradation (PID) of PERC Solar Cells. J. Microelectron. Packag. Soc. 2019, 26, 75–80. [Google Scholar]
- Park, H.; Jeong, J.; Shin, E.; Kim, S.; Yi, J. A reliability study of silicon heterojunction photovoltaic modules exposed to damp heat testing. Microelectron. Eng. 2019, 216, 111081. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Ohdaira, K. Degradation behavior of crystalline silicon solar cells in a cell-level potential-induced degradation test. Sol. Energy 2017, 155, 739–744. [Google Scholar] [CrossRef]
- Naumann, V.; Hagendorf, C.; Grosser, S.; Werner, M.; Bagdahn, J. Micro Structural Root Cause Analysis of Potential Induced Degradation in c-Si Solar Cells. Energy Procedia 2012, 27, 1–6. [Google Scholar] [CrossRef]
Sample | VOC (V) | JSC (mA/cm2) | FF (%) | Efficiency (%) |
---|---|---|---|---|
Reference | 0.658 | 41.24 | 75.3 | 20.44 |
0 nm Al2O3 | 0.572 (−13.07%) | 40.08 (−2.81%) | 72.4 (−3.85%) | 16.6 (−18.79%) |
10 nm Al2O3 | 0.658 (0%) | 40.32 (−2.23%) | 75.1 (−0.27%) | 19.92 (−2.54%) |
20 nm Al2O3 | 0.655 (−0.46%) | 40.48 (−1.84%) | 70.9 (−5.84%) | 18.8 (−8.02%) |
30 nm Al2O3 | 0.658 (0%) | 40.28 (−2.32%) | 76.4 (1.46%) | 20.24 (−0.98%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, E.; Oh, K.-s.; Ryu, S. Reduction of Potential-Induced-Degradation of p-Type PERC Solar Cell Modules by an Ion-Diffusion Barrier Layer Underneath the Front Glass. Processes 2022, 10, 334. https://doi.org/10.3390/pr10020334
Jang E, Oh K-s, Ryu S. Reduction of Potential-Induced-Degradation of p-Type PERC Solar Cell Modules by an Ion-Diffusion Barrier Layer Underneath the Front Glass. Processes. 2022; 10(2):334. https://doi.org/10.3390/pr10020334
Chicago/Turabian StyleJang, Eunjin, Kyoung-suk Oh, and Sangwoo Ryu. 2022. "Reduction of Potential-Induced-Degradation of p-Type PERC Solar Cell Modules by an Ion-Diffusion Barrier Layer Underneath the Front Glass" Processes 10, no. 2: 334. https://doi.org/10.3390/pr10020334
APA StyleJang, E., Oh, K. -s., & Ryu, S. (2022). Reduction of Potential-Induced-Degradation of p-Type PERC Solar Cell Modules by an Ion-Diffusion Barrier Layer Underneath the Front Glass. Processes, 10(2), 334. https://doi.org/10.3390/pr10020334