Numerical Simulation of Microwave Ablation in the Human Liver
Abstract
:1. Introduction
Overall Solution Domain Geometry
2. Numerical Methods
2.1. Computational Grid and Convergence
2.2. Boundary Conditions
2.3. Material Properties
2.4. Initial Conditions
3. Results and Discussion
3.1. Qualitative Temperature Results
3.2. Quantitative Results
3.3. Comparison with Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2020, 71, 209–249. [Google Scholar] [CrossRef]
- Keangin, P.; Rattanadecho, P.; Wessapan, T. An analysis of heat transfer in liver tissue during microwave ablation using single and double slot antenna. Int. Commun. Heat Mass Transf. 2011, 38, 757–766. [Google Scholar] [CrossRef]
- Curto, S.; Taj-Eldin, M.; Fairchild, D.; Prakash, P. Microwave ablation at 915 MHz vs 2.45 GHz: A theoretical and experimental investigation. Med. Phys. 2015, 42, 6152–6161. [Google Scholar] [CrossRef]
- Silva, N.P.; Bottiglieri, A.; Conceição, R.C.; O’Halloran, M.; Farina, L. Characterisation of ex vivo liver thermal properties for electromagnetic-based hyperthermic therapies. Sensors 2020, 20, 3004. [Google Scholar] [CrossRef]
- Amabile, C.; Ahmed, M.; Solbiati, L.; Meloni, M.F.; Solbiati, M.; Cassarino, S.; Tosoratti, N.; Nissenbaum, Y.; Ierace, T.; Goldberg, S.N. Microwave ablation of primary and secondary liver tumours: Ex vivo, in vivo, and clinical characterisation. Int. J. Hyperth. 2017, 33, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Iadanza, E.; Ignesti, C.; Miniati, R.; Luschi, A. Risk Management Process on a New Microwave Thermal Ablation Device: Assessment and follow up. In Proceedings of the XIV Mediterranean Conference on Medical and Biological Engineering and Computing 2016, Paphos, Cyprus, 31 March–2 April 2016; Springer: Cham, Switzerland, 2016; Volume 57, pp. 1019–1023. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, Z.; Dong, L.; Zhang, G.; Wang, Y.; Liang, P. Comparison of temperature curve and ablation zone between 915-and 2450-MHz cooled-shaft microwave antenna: Results in ex vivo porcine livers. Eur. J. Radiol. 2012, 81, 553–557. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Fan, W.; Zhao, M.; Wang, L.; Tang, T.; Jiang, H.; Zhang, J.; Liu, Y. Comparison of microwave ablation and multipolar radiofrequency ablation, both using a pair of internally cooled interstitial applicators: Results in ex vivo porcine livers. Int. J. Hyperth. 2011, 27, 240–248. [Google Scholar] [CrossRef]
- Ashour, A.S.; Asran, M.; Mohamed, W.S.; Fotiadis, D.I. Optimal Localization of a Novel Shifted 1T-Ring Based Microwave Ablation Probe in Hepatocellular Carcinoma. IEEE Trans. Biomed. Eng. 2020, 68, 505–514. [Google Scholar] [CrossRef]
- Portosi, V.; Loconsole, A.M.; Valori, M.; Marrocco, V.; Fassi, I.; Bonelli, F.; Pascazio, G.; Lampignano, V.; Fasano, A.; Prudenzano, F. Low-Cost Mini-Invasive Microwave Needle Applicator for Cancer Thermal Ablation: Feasibility Investigation. IEEE Sens. J. 2021, 21, 14027–14034. [Google Scholar] [CrossRef]
- Farina, L.; Nissenbaum, Y.; Cavagnaro, M.; Goldberg, S.N. Tissue shrinkage in microwave thermal ablation: Comparison of three commercial devices. Int. J. Hyperth. 2018, 34, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Lopresto, V.; Pinto, R.; Farina, L.; Cavagnaro, M. Treatment planning in microwave thermal ablation: Clinical gaps and recent research advances. Int. J. Hyperth. 2017, 33, 83–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, H.P.; Cressman, E.N.; Ceelen, W.; Brace, C.L.; Ivkov, R.; Grüll, H.; Ter Haar, G.; Wust, P.; Crezee, J. Heating technology for malignant tumors: A review. Int. J. Hyperth. 2020, 37, 711–741. [Google Scholar] [CrossRef] [PubMed]
- CGTrader. Available online: www.cgtrader.com (accessed on 31 December 2017).
- TurboSquid. Available online: www.turbosquid.com (accessed on 4 October 2018).
- 3D CAD Browser. Available online: www.3dcadbrowser.com (accessed on 5 February 2016).
- Reynolds, O. On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion. Philos. Trans. R. Soc. A 1895, 186, 123–164. [Google Scholar] [CrossRef]
- Fourier, J. The Analytical Theory of Heat; Dover Publications: New York, NY, USA, 1955. [Google Scholar]
- Hertz, H. Electric Waves; Macmillan and Company: New York, NY, USA, 1893. [Google Scholar]
- Pennes, H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef]
- Gorman, J.M.; Regnier, M.; Abraham, J.P. Heat exchange between the human body and the environment: A comprehensive, multi-scale numerical simulation. Adv. Heat Transf. 2020, 52, 197–247. [Google Scholar] [CrossRef]
- Jiang, S.C.; Ma, N.; Li, H.J.; Zhang, X.X. Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns 2002, 28, 713–717. [Google Scholar] [CrossRef]
- Vallez, L.J.; Plourde, B.D.; Abraham, J.P. A new computational thermal model of the whole human body: Applications to patient warming blankets. Numer. Heat Transf. Part A 2016, 69, 227–241. [Google Scholar] [CrossRef]
- Guntur, S.R.; Lee, K.I.; Paeng, D.G.; Coleman, A.J.; Choi, M.J. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation. Ultrasound Med. Biol. 2013, 39, 1771–1784. [Google Scholar] [CrossRef]
- Wissler, E.H. Human Temperature Control: A Quantitative Approach; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Schepps, J.L.; Foster, K.R. The UHF and microwave dielectric properties of normal and tumour tissues: Variation in dielectric properties with tissue water content. Phys. Med. Biol. 1980, 25, 1149. [Google Scholar] [CrossRef]
- Pethig, R. Dielectric properties of body tissues. Clin. Phys. Physiol. Meas. 1987, 8, 5–12. [Google Scholar] [CrossRef]
- Stauffer, P.R.; Rossetto, F.; Prakash, M.; Neuman, D.G.; Lee, T. Phantom and animal tissues for modelling the electrical properties of human liver. Int. J. Hyperth. 2003, 19, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Henriques, F.C., Jr.; Moritz, A.R. Studies of thermal injury in the conduction of heat to and through skin and the temperatures attained therein: A theoretical and experimental investigation. Am. J. Pathol. 1947, 23, 531–549. [Google Scholar]
- Dewhirst, M.W.; Viglianti, B.L.; Lora-Michiels, M.; Hanson, M.; Hoopes, P.J. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int. J. Hyperth. 2003, 19, 267–294. [Google Scholar] [CrossRef]
- Viglianti, B.L.; Dewhirst, M.W.; Abraham, J.P.; Gorman, J.M.; Sparrow, E.M. Rationalization of thermal injury quantification methods: Application to skin burns. Burns 2014, 40, 896–902. [Google Scholar] [CrossRef]
- Trujillo, M.; Berjano, E. Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. Int. J. Hyperth. 2013, 29, 590–597. [Google Scholar] [CrossRef]
- Pearce, J.A. Comparative analysis of mathematical models of cell death and thermal damage processes. Int. J. Hyperth. 2013, 29, 262–280. [Google Scholar] [CrossRef]
- Chang, I.A. Considerations for thermal injury analysis for RF ablation devices. Open Biomed. Eng. J. 2010, 4, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Lopresto, V.; Pinto, R.; Lovisolo, G.A.; Cavagnaro, M. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz. Phys. Med. Biol. 2012, 57, 2309. [Google Scholar] [CrossRef]
- Gabriel, C. Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies; Report AFOSR-TR-96; U.S. Air Force: Washington, DC, USA, 1996. [Google Scholar] [CrossRef] [Green Version]
Density (kg/m3) | Specific Heat °C) | °C) | ||
---|---|---|---|---|
Tissues | Liver | 1100 | 3350 | 0.55 |
Muscle | 1050 | 3770 | 0.5 | |
Fat | 850 | 2500 | 0.2 | |
Skin | 1000 | 3770 | 0.21 | |
Bone | 1300 | 1590 | 1.16 | |
Probe | Ceramic | 6050 | 400 | 2.2 |
Copper | 8960 | 386 | 401 | |
Stainless steel | 8055 | 500 | 16.2 | |
Polyimide | 1400 | 1320 | 0.471 | |
Teflon | 800 | 1000 | 0.25 |
Electric Conductivity σ (S/m) | ||||
---|---|---|---|---|
Tissues | Liver | 44 | 1 | 1.79 |
Muscle | 49.6 | 1 | 2.56 | |
Fat | 12 | 1 | 0.82 | |
Skin | 44 | 1 | 1.85 | |
Bone | 4.8 | 1 | 0.21 | |
Probe | Ceramic | 29 | 1 | 0 |
Copper | 1 | 0.999 | 5.8 × 107 | |
Stainless steel | 1 | 1 | 1.1 × 106 | |
Polyimide | 3.5 | 1 | 0 | |
Teflon | 1.7 | 1 | 0 |
Case # | Input Power | Coolant Flow Rate (g/s) |
---|---|---|
1 | 10 | 1 |
2 | 20 | 1 |
3 | 30 | 0 |
4 | 30 | 0.5 |
5 | 30 | 1 |
6 | 30 | 2 |
Input Power | Total Input Power after Losses | Power Absorbed by Liver | Power Absorbed by Surrounding Tissues |
---|---|---|---|
10 | 7.15 | 5.96 | 0.92 |
20 | 14.30 | 11.91 | 1.83 |
30 | 21.44 | 17.85 | 2.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorman, J.; Tan, W.; Abraham, J. Numerical Simulation of Microwave Ablation in the Human Liver. Processes 2022, 10, 361. https://doi.org/10.3390/pr10020361
Gorman J, Tan W, Abraham J. Numerical Simulation of Microwave Ablation in the Human Liver. Processes. 2022; 10(2):361. https://doi.org/10.3390/pr10020361
Chicago/Turabian StyleGorman, John, Winston Tan, and John Abraham. 2022. "Numerical Simulation of Microwave Ablation in the Human Liver" Processes 10, no. 2: 361. https://doi.org/10.3390/pr10020361
APA StyleGorman, J., Tan, W., & Abraham, J. (2022). Numerical Simulation of Microwave Ablation in the Human Liver. Processes, 10(2), 361. https://doi.org/10.3390/pr10020361