Climate Neutrality Concepts for the German Chemical–Pharmaceutical Industry
Abstract
:1. Introduction
2. Section-Coupling and World Scale Competitiveness
- In Germany a manifold of even sometimes differing studies is available based on different approaches [16,17,18,19,20,21]. Most of these studies have to be ranked as type of first feasibility study in engineering theory [22]. Therefore, they need to be followed by experimental feasibility such as piloting and economic evaluation as well before being considered by investors for large scale investment. Some piloting studies are made [23,24]. It has to be taken into account that other regions are advanced, e.g., Japan’s H2 decision [25], Arabian region (solar power to x) parks [26,27,28,29], China [30] and the US [31] in either a piloting or industrial scale.
- Mass streams (jato) with energy content (GJ/ton) and GWP (CO2eq/to) potential have to be considered always together and in total.
- Any energy and mass conversion has to be limited to its absolute minimum, as any additional step causes massive reductions in efficiency factor, which is equivalent to non-competitive waste and loss of money. Here, 1–2 steps is a limitation already known [32].
- Energy storage of green power is a challenge still unsolved [33,34,35]. However, this has always not been a task for chemical–pharmaceutical manufactures but for their energy suppliers, to whom the performance of energy supply reliability they pay their price, e.g., Arabian consortia solve that by financing solar power parks owned by the state and taking back for about 10–15 years defined energy amounts at guaranteed prices [36,37,38,39] at about a factor of 1/10 less than in Europe/Germany. Solving that, investors do like to take, in general, no risks.
- The magnitude of investments needs for the total technology circle in any branch now politically demanded are the largest in history ever and are therefore not to be covered without private investors. State money alone would cause deflation and unacceptable societal shifts by economic instability [40].
- Subventions of state should be limited to competitive products and technologies for being sustainable for society and being refinanced by taxes, employment and net-gross-product. Lessons learned from biogas, biodiesel and bioethanol must be avoided as in a magnitude, which is now discussed as the technology cycle; it is totally unrealistic to sink that money without payback as well.
- Some technologies and their competitive scales have already been approved and decided upon by others:
- ○
- H2 electrolysis is realized in scales 20–25 MW up to, recently, 100 MW [43].
- ○
- ○
- Sun fuels are an additional carbon source to be designed. The tank vs. plate discussion as well as huge regional agricultural mono-cultures lacking biodiversity have caused society to deny those approaches, and [47] biomass is regarded as too valuable for combustion; either nutrition or raw materials are much higher-value products. Growing world populations need land mass for nutrition at first.
- ○
- Only 5% of worldwide oil is utilized for the chemical–pharmaceutical industry as its carbon feedstock needs. Therefore, it will be the last branch that gets oil as feed due to its high value generation and satisfaction of societal needs [48].
- ○
- Fuel cells have suffered from efficiency factor loss due to additional conversion and unacceptable operation times for decades [49].
- ○
- Green (solar and wind) power to x (chemicals) is based on mostly already-approved large-scale technology. Nevertheless, electric powers storage is not solved appropriately efficiently [50].
- The cost of green technology conversions, additional not-refinanced investments and factor 3 higher COGs [51,52,53,54], an estimated 10- maximal optimistic 30% improvement by operation optimization, still leaves worldwide uncompetitive products. This would lead to the following approach: carbon feedstock has to be priced up. However, as a consequence, this would increase living costs to unacceptable limits.
- Moreover, such pricing taxes would cause natural counter-reactions and differences by state subsidies, e.g., CO2 certificates in Germany are targeted to about 100 EUR/ton, whereas in the EU they are 50 EUR/ton, and in China 3–5 EUR/ton is discussed, causing unbalanced competition [55].
- Therefore, CO2-free certifications for worldwide non-competitive processes and products would cause the taxpayer to finance that as well, which would cause unacceptable increases of living costs again.
- No additional CO2 has to be generated additionally as feedstock; only thermodynamically unavoidable CO2 generation by combustion and chemical conversion reactions (such as cement) will be acceptable, but this CO2 cycle has to be closed as far as possible by generating, e.g., methanol.
- Methanol from CO2 with green power H2 via electrolysis is used as raw material for, e.g., polymer synthesis routes [60].
- Any product design fit for recycling has to be established (Figure 1), which is technologically a challenge. Even recent new technology being green lacks that: wind generation plants could not be recycled efficiently (to individual, non-standardized metal with GRP (glass fiber reinforced plastic) construction), and their pressed fiber plastic matrices do not even burn in WIPs (waste incineration plant).
- Section coupling for energy on different temperature levels and electrical power as well as recycle streams have to be considered, e.g., at the moment, the cement industry takes municipal waste from WIPs to improve their GWP balance, but that leaves GIPs in under-load operation, inefficiently.
- Any long transportation has to be avoided, but a preferred main few liquids and gas mass streams should be summarized in pipelines such as CO2, H2, MeOH and ammonia for world-scale plants being competitive on the world market.
3. Advanced Circular Economy
- Bio-refinery concepts are only suitable with waste streams in cascade utilization and recycling strategies, as no agricultural space is free for energy or carbon source generation, which should anyhow be avoided [47,73,74]. As mass products lack efficiency with huge land killing potential [75,76,77], in contrast, specialties utilizing the plants’ own synthetic power for complex molecular structures should be used [78]. Here, GWP vs. COGs analysis, Figure 3 and Figure 4, balances it as economically feasible [3]. The general rule is obvious, that it is inefficient by mankind to destruct at-first complex molecular structures made by nature already in order to afterwards generate new molecular entities from scratch with complex synthesis routes (see Figure 5) [79,80].
- Bio-based-world approaches include enzymatic instead of chemical synthesis routes. Improvements are still many fold [81,82,83]. Synthesis does need new catalysts and intensified green approaches such as electrochemistry and plasma ionization, even on the standard processes such as Haber–Bosch [84,85,86,87,88,89] and Oswald [90,91,92,93].
4. Germany Chemical–Pharmaceutical Industry Conception for Climate Neutrality
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donaldson, J.D.; Beyersmann, D. Cobalt and cobalt compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; pp. 467–497. [Google Scholar]
- Schmidt, A.; Strube, J. Application and Fundamentals of Liquid-Liquid Extraction Processes: Purification of Biologicals, Botanicals, and Strategic Metals. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 1–52. ISBN 9780471238966. [Google Scholar]
- Schmidt, A.; Uhlenbrock, L.; Strube, J. Technical Potential for Energy and GWP Reduction in Chemical–Pharmaceutical Industry in Germany and EU—Focused on Biologics and Botanicals Manufacturing. Processes 2020, 8, 818. [Google Scholar] [CrossRef]
- Report of the Conference of the Parties on Its Twenty-First Session, Held in Paris from 30 November to 13 December 2015. Addendum. Part Two: Action Taken by the Conference of the Parties at Its Twenty-First Session. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/10.pdf (accessed on 1 November 2021).
- Carbon Pollution Emission Guidelines for Existing Stationary Sources: Electric Utility Generating Units; 40 CFR Part 60. Available online: https://www.federalregister.gov/documents/2017/10/16/2017-22349/repeal-of-carbon-pollution-emission-guidelines-for-existing-stationary-sources-electric-utility (accessed on 1 November 2021).
- Bundesministerium für Umwelt, Naturschutz und Nukleare Sicherheit. Gesetz zur Einführung eines Bundes-Klimaschutzgesetzes und zur Änderung Weiterer Vorschriften, 2019. Available online: https://dip.bundestag.de/vorgang/gesetz-zur-einf%C3%BChrung-eines-bundes-klimaschutzgesetzes-und-zur-%C3%A4nderung-weiterer-vorschriften/254400 (accessed on 1 November 2021).
- Bundesverband der Pharmazeutischen Industrie e.V. Pharma-Daten 2019. Available online: https://www.bpi.de/de/service/pharma-daten (accessed on 1 November 2021).
- Verband der chemischen Industrie e.V. Energiestatistik in Daten und Fakten; Verband der chemischen Industrie, e.V.: Frankfurt am Main, Germany, 2020. [Google Scholar]
- Umweltbundesamt. National Trend Tables for Greenhouse Gas Emissions by Sectors of the German Climate Protection Act; Umweltbundesamt: Dessau-Roßlau, Germany, 2020.
- Geres, R.; Kohn, A.; Lenz, S.C.; Ausfelder, F.; Bazzanella, A.; Möller, A. Roadmap Chemie 2050: Auf dem Weg zu Einer Treibhausgasneutralen Chemischen Industrie in Deutschland: Eine Studie von DECHEMA und FutureCamp für den VCI; DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.: Frankfurt am Main, Germany, 2019. [Google Scholar]
- Industrie, V.D.C. Chemiewirtschaft in Zahlen; VCI: Frankfurt am Main, Germany, 2021. [Google Scholar]
- FAZ. Energiewende Könnte bis zu Einer Billion Euro Kosten. Available online: https://www.faz.net/aktuell/politik/energiepolitik/umweltminister-altmaier-energiewende-koennte-bis-zu-einer-billion-euro-kosten-12086525.html (accessed on 1 November 2021).
- VDI. Wasserstoff für eine CO2-Neutrale Chemiebranche. Available online: https://www.vdi.de/news/detail/wasserstoff-fuer-eine-co2-neutrale-chemiebranche (accessed on 1 November 2021).
- Lütkehaus, I.; Salecker, H.; Adlunger, K. Potenzial der Windenergie an Land: Studie zur Ermittlung des Bundesweiten Flächen- und Leistungsptenzials der Windenergienutzung an Land. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/potenzial_der_windenergie.pdf (accessed on 1 November 2021).
- Wirth, H. Aktuelle Fakten zur Photovoltaik in Deutschland. Available online: https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/aktuelle-fakten-zur-photovoltaik-in-deutschland.pdf (accessed on 1 November 2021).
- BMBF. Kopernikus Projekte: ENSURE. Available online: https://www.kopernikus-projekte.de/projekte/ensure (accessed on 1 November 2021).
- BMBF. Kopernikus Projekte: Ariadne. Available online: https://www.kopernikus-projekte.de/projekte/ariadne (accessed on 1 November 2021).
- BMBF. Kopernikus Projekte: P2X. Available online: https://www.kopernikus-projekte.de/projekte/p2x (accessed on 1 November 2021).
- BMBF. Kopernikus Projekte: SynErgie. Available online: https://www.kopernikus-projekte.de/projekte/synergie (accessed on 1 November 2021).
- BBI JU. Bio-Based Industries Joint Undertaking. Available online: https://www.bbi.europa.eu/ (accessed on 1 November 2021).
- FNR. Förderprogramm “Nachwachsende Rohstoffe”. Available online: https://www.fnr.de/projektfoerderung/foerderprogramm-nachwachsende-rohstoffe (accessed on 1 November 2021).
- Peters, M.S.; Timmerhaus, K.D.; West, R.E. Plant Design and Economics for Chemical Engineers, 5th International ed.; McGraw-Hill: Boston, MA, USA, 2003; ISBN 0071198725. [Google Scholar]
- Atmosfair gGmbH. Atmosfair. Available online: https://www.atmosfair.de/de/ (accessed on 1 November 2021).
- INERATEC. Willkommen Bei Ineratec. Available online: https://ineratec.de/ (accessed on 1 November 2021).
- Nagashima, M. Japan’s Hydrogen Strategy and Its Economic and Geopolitical Implications; IFRI: Paris, France, 2018. [Google Scholar]
- Almasoud, A.H.; Gandayh, H.M. Future of solar energy in Saudi Arabia. J. King Saud Univ. Eng. Sci. 2015, 27, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Alraddadi, M.; Conejo, A.J. Operation of an all-solar power system in Saudi Arabia. Int. J. Electr. Power Energy Syst. 2021, 125, 106466. [Google Scholar] [CrossRef]
- Alnatheer, O. The potential contribution of renewable energy to electricity supply in Saudi Arabia. Energy Policy 2005, 33, 2298–2312. [Google Scholar] [CrossRef]
- Dasari, H.P.; Desamsetti, S.; Langodan, S.; Attada, R.; Kunchala, R.K.; Viswanadhapalli, Y.; Knio, O.; Hoteit, I. High-resolution assessment of solar energy resources over the Arabian Peninsula. Appl. Energy 2019, 248, 354–371. [Google Scholar] [CrossRef]
- Bork, H.; Ernhofer, W. Chinas Öl- und Chemiefirmen Arbeiten mit Hochdruck an ihrer CO2-Bilanz. 2021. Available online: https://www.process.vogel.de/chinas-oel-und-chemiefirmen-arbeiten-mit-hochdruck-an-ihrer-co2-bilanz-a-1038526/ (accessed on 1 November 2021).
- National Renewable Energy Laboratory. NREL and Southern California Gas. Launch First, U.S. Power-to-Gas. Project. Available online: https://www.nrel.gov/workingwithus/partners/partnerships-southern-california-gas.html (accessed on 1 November 2021).
- Crolius, S.H. The Hydrogen Consensus. Available online: https://www.ammoniaenergy.org/ (accessed on 1 November 2021).
- Arbabzadeh, M.; Johnson, J.X.; Keoleian, G.A.; Rasmussen, P.G.; Thompson, L.T. Twelve Principles for Green Energy Storage in Grid Applications. Environ. Sci. Technol. 2016, 50, 1046–1055. [Google Scholar] [CrossRef] [PubMed]
- Faisal, M.; Hannan, M.A.; Ker, P.J.; Hussain, A.; Mansor, M.B.; Blaabjerg, F. Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges. IEEE Access 2018, 6, 35143–35164. [Google Scholar] [CrossRef]
- Kousksou, T.; Bruel, P.; Jamil, A.; El Rhafiki, T.; Zeraouli, Y. Energy storage: Applications and challenges. Sol. Energy Mater. Sol. Cells 2014, 120, 59–80. [Google Scholar] [CrossRef]
- Power-Technology.Com. Saudi Arabia Makes Next Solar Move. Available online: https://www.power-technology.com/features/the-worlds-biggest-solar-power-plants/ (accessed on 1 November 2021).
- Power-Technology.Com. The World’s Biggest Solar Power Plants. Available online: https://www.power-technology.com/features/the-worlds-biggest-solar-power-plants/ (accessed on 1 November 2021).
- Balkan Green Energy News. Saudi Arabia to Add 3.7 GW in Solar Power, Achieves World’s Lowest Price. Available online: https://balkangreenenergynews.com/saudi-arabia-to-add-3-7-gw-in-solar-power-achieves-worlds-lowest-price/ (accessed on 1 November 2021).
- Bellini, E. Financial Close for 1.5 GW Solar PV Project in Saudi Arabia. Available online: https://www.pv-magazine.com/2021/08/16/financial-close-for-1-5-gw-solar-pv-project-in-saudi-arabia/ (accessed on 1 November 2021).
- Hamilton, D. Keynes, Cooperation, and Economic Stability. Am. J. Econ. Sociol. 1954, 14, 59–70. [Google Scholar] [CrossRef]
- Marcus, A.I. Technology in America: A Brief History, 3rd ed.; Macmillan Education: London, UK, 2018. [Google Scholar]
- Colin, N. A Brief History of the World (of Venture Capital). Available online: https://salon.thefamily.co/a-brief-history-of-the-world-of-venture-capital-65a8610e7dc2 (accessed on 1 November 2021).
- Freist, R. Hamburg to Build World’s Largest Hydrogen Electrolysis Plant: A Plant with a Capacity of 100 Megawatts (MW) Is to Be Built in the Port of Hamburg. The Hydrogen Is to Be Produced with the Aid of Green Electricity. 2019. Available online: https://www.hannovermesse.de/en/news/news-articles/hamburg-to-build-worlds-largest-hydrogen-electrolysis-plant (accessed on 1 November 2021).
- Sampson, J. Who is Japan H2 Mobility? 2020. Available online: https://www.h2-view.com/story/who-is-japan-h2-mobility/ (accessed on 1 November 2021).
- Hommen, M. Daimler Stoppt Entwicklung für Pkw-Brennstoffzellen—Aus für GLC F-Cell. 2021. Available online: https://www.automobil-industrie.vogel.de/daimler-stoppt-entwicklung-fuer-pkw-brennstoffzellen-aus-fuer-glc-f-cell-a-927203/ (accessed on 1 November 2021).
- Volkswagen. Wasserstoff Oder Batterie? Bis auf Weiteres ein Klarer Fall. Available online: https://www.volkswagenag.com/de/news/stories/2019/08/hydrogen-or-battery--that-is-the-question.html# (accessed on 1 November 2021).
- Kircher, M. Bioeconomy: Markets, Implications, and Investment Opportunities. Economies 2019, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Simmrock, K.-H. Technische Chemie: Lecture, 1986. Available online: https://www.chemie.tu-darmstadt.de/claus/akclaus/lehre_3/technischechemie1/technischechemiei.en.jsp (accessed on 1 November 2021).
- Bundeswehr. Die U-Boot-Klasse 212 A. Available online: https://www.bundeswehr.de/de/ausruestung-technik-bundeswehr/seesysteme-bundeswehr/u-boot-klasse-212-a (accessed on 1 November 2021).
- Beaudin, M.; Zareipour, H.; Schellenberglabe, A.; Rosehart, W. Energy storage for mitigating the variability of renewable electricity sources: An updated review. Energy Sustain. Dev. 2010, 14, 302–314. [Google Scholar] [CrossRef]
- Maritime Knowledge Center (MKC); TUDelft. Public Final Report-Methanol as an Alternative Fuel for Vessels; MKC: London, UK, 2018. [Google Scholar]
- Greenhalgh, K. Methanol Production Capacity May Quintuple on Decarbonized Industry Transformation: Study. 2021. Available online: https://ihsmarkit.com/research-analysis/methanol-production-capacity-may-quintuple-on-decarbonized-ind.html (accessed on 1 November 2021).
- Tullo, H.A. Is Ammonia the Fuel of the Future? Industry Sees the Agricultural Chemical as a Convenient Means to Transport Hydrogen. 2021. Available online: https://cen.acs.org/business/petrochemicals/ammonia-fuel-future/99/i8 (accessed on 1 November 2021).
- ResearchAndMarkets.Com. Green Ammonia Market. Outlook 2028. 2021. Available online: https://www.businesswire.com/news/home/20210817005776/en/Green-Ammonia-Market-Outlook-2028---ResearchAndMarkets.com (accessed on 1 November 2021).
- Handelsblatt. Industrie umging Milliardenzahlungen bei EEG-Umlage. Medienbericht. 2021. Available online: https://www.handelsblatt.com/unternehmen/industrie/medienbericht-industrie-umging-milliardenzahlungen-bei-eeg-umlage-/27753600.html?ticket=ST-2231597-fdDNmFaaN2e15dufbNEu-cas01.example.org (accessed on 1 November 2021).
- MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C.S.; Williams, C.K.; Shah, N.; Fennell, P. An overview of CO2 capture technologies. Energy Environ. Sci. 2010, 3, 1645–1669. [Google Scholar] [CrossRef] [Green Version]
- Kwak, N.-S.; Lee, J.H.; Lee, I.Y.; Jang, K.R.; Shim, J.-G. A study of the CO2 capture pilot plant by amine absorption. Energy 2012, 47, 41–46. [Google Scholar] [CrossRef]
- Guteša Božo, M.; Vigueras-Zuniga, M.; Buffi, M.; Seljak, T.; Valera-Medina, A. Fuel rich ammonia-hydrogen injection for humidified gas turbines. Appl. Energy 2019, 251, 113334. [Google Scholar] [CrossRef]
- Hussein, N.A.; Valera-Medina, A.; Alsaegh, A.S. Ammonia- hydrogen combustion in a swirl burner with reduction of NOx emissions. Energy Procedia 2019, 158, 2305–2310. [Google Scholar] [CrossRef]
- Ruiz, P.; Achim, R.; Skoczinski, P.; Ravenstijn, J.; Carus, M. Carbon Dioxide (CO2) as Chemical Feedstock for Polymers—Technologies, Polymers, Developers and Producers. Graphics. 2021. Available online: https://renewable-carbon.eu/publications/product/carbon-dioxide-co2-as-chemical-feedstock-for-polymers-technologies-polymers-developers-and-producers-graphics-figure-2-png/ (accessed on 1 November 2021).
- Energy Saving Trust 2021. Innovations in the War on Plastic: Making Progress in 2021. 2021. Available online: https://energysavingtrust.org.uk/10-fantastic-innovations-war-plastic-updated/ (accessed on 1 November 2021).
- Nicolli, F.; Johnstone, N.; Söderholm, P. Resolving Failures in Recycling Markets: The Role of Technological Innovation. Environ. Econ. Policy Stud. 2012, 14, 261–288. [Google Scholar] [CrossRef]
- Recycling Portal. “Best CO2 Utilisation 2021”—Winners of the Innovation Award. 2021. Available online: https://recyclingportal.eu/Archive/64145 (accessed on 1 November 2021).
- King, A. Waste CO2 to be Turned into Ingredients for Fuel, Plastics and Even Food. 2018. Available online: https://ec.europa.eu/research-and-innovation/en/horizon-magazine/waste-co2-be-turned-ingredients-fuel-plastics-and-even-food (accessed on 1 November 2021).
- Ramesohl, S.; Vetter, L.; Meys, R.; Steger, S. Chemical Plastics Recycling—Potentials and Development Perspectives. A Contribution to Defossiling the Chemical and Plastics Processing Industry in NRW. 2020. Available online: https://www.in4climate.nrw/fileadmin/Downloads/Ergebnisse/IN4climate.NRW/AG-Papiere/2020/in4climatenrw-chemical-plastics-recycling-web-en.pdf (accessed on 1 November 2021).
- McKinsey & Company. How Plastics-Waste Recycling Could Transform the Chemical Industry. 2018. Available online: https://www.mckinsey.com/~/media/McKinsey/Industries/Chemicals/Our%20Insights/How%20plastics%20waste%20recycling%20could%20transform%20the%20chemical%20industry/How-plastics-waste-recycling-could-transform.pdf#:~:text=4%20How%20plastics-waste%20recycling%20could%20transform%20the%20chemical,the%20launch%20on%20an%20industrial%20scale%20of%20two (accessed on 1 November 2021).
- Robinius, M.; Markewitz, P.; Lopion, P.; Kullmann, F.; Heuser, P.M.; Syranidis, K.; Cerniauskas, S.; Schöb, T.; Reuß, M.; Ryberg, S. Wege für die Energiewende: Kosteneffiziente und Klimagerechte Transformationsstrategien für das Deutsche Energiesystem bis zum Jahr 2050; Forschungszentrum Jülich GmbH Zentralbibliothek: Jülich, Germany, 2020. [Google Scholar]
- Kardung, M.; Cingiz, K.; Costenoble, O.; Delahaye, R.; Heijman, W.; Lovrić, M.; van Leeuwen, M.; M’Barek, R.; van Meijl, H.; Piotrowski, S.; et al. Development of the Circular Bioeconomy: Drivers and Indicators. Sustainability 2021, 13, 413. [Google Scholar] [CrossRef]
- Espinoza, L.T.; Rostek, L.; Loibl, A.; Stijepic, D. The Promise and Limits of Urban Mining: Potentials, Trade-Offs and Supporting Factors for the Recovery of Raw Materials from the Anthroposphere. 2020. Available online: https://www.isi.fraunhofer.de/content/dam/isi/dokumente/ccn/2020/Fraunhofer_ISI_Urban_Mining.pdf (accessed on 1 November 2021).
- ERP Italia. NEWS New Project Offers a Look at the Future of Urban Mining in Europe. 2020. Available online: https://erp-recycling.org/en-it/news-and-events/2020/06/new-project-offers-a-look-at-the-future-of-urban-mining-in-europe/ (accessed on 1 November 2021).
- CORDIS. European Consortium Will Promote the Recycling of Urban Biowaste for a Circular Economy. Available online: https://cordis.europa.eu/article/id/125467-european-consortium-will-promote-the-recycling-of-urban-biowaste-for-a-circular-economy (accessed on 1 November 2021).
- REWIMET. Recycling-Cluster Wirtschaftsstrategischer Metalle. Available online: https://www.rewimet.de/ (accessed on 1 November 2021).
- Kircher, M. Fundamental Biochemical and Biotechnological Principles of Biomass Growth and Use. In Introduction to Renewable Biomaterials; Ayoub, A.S., Lucia, L.A., Eds.; John Wiley & Sons Ltd: Chichester, UK, 2017; pp. 1–38. [Google Scholar]
- Kircher, M. Reducing the emissions Scope 1-3 in the chemical industry. J. Bus. Chem. 2021. [Google Scholar] [CrossRef]
- Köhne, M. Multi-stakeholder initiative governance as assemblage: Roundtable on Sustainable Palm Oil as a political resource in land conflicts related to oil palm plantations. Agric. Hum. Values 2014, 31, 469–480. [Google Scholar] [CrossRef]
- Junkong, P.; Ikeda, Y. Properties of natural rubbers from guayule and rubber dandelion. In Chemistry, Manufacture, and Application of Natural Rubber; Elsevier: Amsterdam, The Netherlands, 2021; pp. 177–201. ISBN 9780128188439. [Google Scholar]
- van Beilen, J.B.; Poirier, Y. Establishment of new crops for the production of natural rubber. Trends Biotechnol. 2007, 25, 522–529. [Google Scholar] [CrossRef]
- Bart, H.J.; Bäcker, W.; Bischoff, F.; Godecke, R.; Johannisbau, W.; Jordan, V.; Stockfleth, R.; Strube, J.; Wiesmet, V. Phytoextrakte—Produkte und Prozesse: Vorschlag für einen neuen, Fachübergreifenden Forschungsschwerpunkt; DECHEMA: Frankfurt am Main, Germany.
- Sixt, M.; Strube, J. Pressurized hot water extraction of 10-deacetylbaccatin III from yew for industrial application. Resour. Effic. Technol. 2017, 3, 177–186. [Google Scholar] [CrossRef]
- Sixt, M.; Strube, J. Systematic and Model-Assisted Evaluation of Solvent Based- or Pressurized Hot Water Extraction for the Extraction of Artemisinin from Artemisia annua L. Processes 2017, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Grosse-Sommer, A.P.; Grünenwald, T.H.; Paczkowski, N.S.; van Gelder, R.N.; Saling, P.R. Applied sustainability in industry: The BASF eco-eEfficiency toolbox. J. Clean. Prod. 2020, 258, 120792. [Google Scholar] [CrossRef]
- Saling, P. The BASF Eco-Efficiency Analysis: A 20-Year Success Story, 1st ed.; BASF SE Sustainability Strategy: Ludwigshafen, Germany, 2016. [Google Scholar]
- Ökobilanzen Ausgewählter Biotreibstoffe: Erstellt im Rahmen des Projekts “Biokraftstoffe—Potentiale, Risiken, Zukunftsszenarien”; Reports REP-0360, Wien, 2012. Available online: http://www.umweltbundesamt.at/aktuell/publikationen/publikationssuche/publikationsdetail/?pub_id=1957 (accessed on 1 November 2021).
- Albert, J.; Jess, A.; Kern, C.; Pöhlmann, F.; Glowienka, K.; Wasserscheid, P. Formic Acid-Based Fischer–Tropsch Synthesis for Green Fuel Production from Wet Waste Biomass and Renewable Excess Energy. ACS Sustain. Chem. Eng. 2016, 4, 5078–5086. [Google Scholar] [CrossRef]
- Greener Fischer-Tropsch. Processes: For Fuels and Feedstocks, 1st ed.; Maitlis, P.M., de Klerk, A., Eds.; Wiley-VCH: Weinheim, Germany, 2013. [Google Scholar]
- Landau, M.V.; Vidruk, R.; Herskowitz, M. Sustainable production of green feed from carbon dioxide and hydrogen. ChemSusChem 2014, 7, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Stark, A. Künstliche Photosynthese soll Künftig Spezialchemikalien aus CO2 Herstellen. 2019. Available online: https://www.process.vogel.de/kuenstliche-photosynthese-soll-kuenftig-spezialchemikalien-aus-co2-herstellen-a-872946/ (accessed on 1 November 2021).
- Stark, A. Elektrokatalytische Umsetzung von CO2: So wird ein Treibhausgas zum Rohstoff. 2020. Available online: https://www.process.vogel.de/elektrokatalytische-umsetzung-von-co2-so-wird-ein-treibhausgas-zum-rohstoff-a-957010/ (accessed on 1 November 2021).
- Stark, A. Wie Elektrokatalytische Synthese die Chemische Produktion Nachhaltig Machen Kann. 2021. Available online: https://www.process.vogel.de/wie-elektrokatalytische-synthese-die-chemische-produktion-nachhaltig-machen-kann-a-1072944/ (accessed on 1 November 2021).
- Tantillo, A. Exploring Greener Approaches to Nitrogen Fixation. 2018. Available online: https://phys.org/news/2018-06-exploring-greener-approaches-nitrogen-fixation.html (accessed on 1 November 2021).
- Grande, C.A.; Andreassen, K.A.; Cavka, J.H.; Waller, D.; Lorentsen, O.-A.; Øien, H.; Zander, H.-J.; Poulston, S.; García, S.; Modeshia, D. Process Intensification in Nitric Acid Plants by Catalytic Oxidation of Nitric Oxide. Ind. Eng. Chem. Res. 2018, 57, 10180–10186. [Google Scholar] [CrossRef]
- Ma, Y.; Hou, G.; Xin, B. Green Process Innovation and Innovation Benefit: The Mediating Effect of Firm Image. Sustainability 2017, 9, 1778. [Google Scholar] [CrossRef] [Green Version]
- Rouwenhorst, K.H.R.; Jardali, F.; Bogaerts, A.; Lefferts, L. From the Birkeland-Eyde process towards energy-efficient plasma-based NO X synthesis: A techno-economic analysis. Energy Environ. Sci. 2021, 14, 2520–2534. [Google Scholar] [CrossRef]
- Abliz, D.; Duan, Y.; Steuernagel, L.; Xie, L.; Li, D.; Ziegmann, G. Curing Methods for Advanced Polymer Composites—A Review. Polym. Polym. Compos. 2013, 21, 341–348. [Google Scholar] [CrossRef]
- Bassyouni, M.; Taha, I.; Abdel-Hamid, S.M.-S.; Steuernagel, L. Physico-mechanical properties of chemically treated polypropylene rice straw bio-composites. J. Reinf. Plast. Compos. 2012, 31, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Elsabbagh, A.; Ramzy, A.; Steuernagel, L.; Ziegmann, G. Models of flow behaviour and fibre distribution of injected moulded polypropylene reinforced with natural fibre composites. Compos. Part. B Eng. 2019, 162, 198–205. [Google Scholar] [CrossRef]
- El-Sabbagh, A.; Steuernagel, L.; Ziegmann, G. Low combustible polypropylene/flax/magnesium hydroxide composites: Mechanical, flame retardation characterization and recycling effect. J. Reinf. Plast. Compos. 2013, 32, 1030–1043. [Google Scholar] [CrossRef] [Green Version]
- El-Sabbagh, A.; Steuernagel, L.; Ziegmann, G.; Meiners, D.; Toepfer, O. Processing parameters and characterisation of flax fibre reinforced engineering plastic composites with flame retardant fillers. Compos. Part. B Eng. 2014, 62, 12–18. [Google Scholar] [CrossRef]
- El-Sabbagh, A.M.M.; Steuernagel, L.; Meiners, D.; Ziegmann, G. Effect of extruder elements on fiber dimensions and mechanical properties of bast natural fiber polypropylene composites. J. Appl. Polym. Sci. 2014, 131, 1–15. [Google Scholar] [CrossRef]
- Gudayu, A.D.; Steuernagel, L.; Meiners, D.; Gideon, R. Effect of surface treatment on moisture absorption, thermal, and mechanical properties of sisal fiber. J. Ind. Text. 2020, 152808372092477. [Google Scholar] [CrossRef]
- Ramzy, A.Y.; El-Sabbagh, A.M.M.; Steuernagel, L.; Ziegmann, G.; Meiners, D. Rheology of natural fibers thermoplastic compounds: Flow length and fiber distribution. J. Appl. Polym. Sci. 2014, 131, 1–8. [Google Scholar] [CrossRef]
- Xie, Y.; Krause, A.; Militz, H.; Steuernagel, L.; Mai, C. Effects of hydrophobation treatments of wood particles with an amino alkylsiloxane co-oligomer on properties of the ensuing polypropylene composites. Compos. Part. A Appl. Sci. Manuf. 2013, 44, 32–39. [Google Scholar] [CrossRef]
- Xie, Y.; Xiao, Z.; Grüneberg, T.; Militz, H.; Hill, C.A.; Steuernagel, L.; Mai, C. Effects of chemical modification of wood particles with glutaraldehyde and 1,3-dimethylol-4,5-dihydroxyethyleneurea on properties of the resulting polypropylene composites. Compos. Sci. Technol. 2010, 70, 2003–2011. [Google Scholar] [CrossRef]
- Fehrenbach, H. BIOMASSEKASKADEN: Mehr Ressourceneffizienz durch Stoffliche Kaskadennutzung von Biomasse—von der Theorie zur Praxis. Available online: https://www.bmu.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3713_44_100_biomassekaskaden_bf.pdf (accessed on 1 November 2021).
- Fúnez Guerra, C.; Reyes-Bozo, L.; Vyhmeister, E.; Jaén Caparrós, M.; Salazar, J.L.; Clemente-Jul, C. Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan. Renew. Energy 2020, 157, 404–414. [Google Scholar] [CrossRef]
- Menzel, N. Konsortium Plant 100-mW-Wasserstoffelektrolyse in Hamburg. 2021. Available online: https://www.chemietechnik.de/anlagenbau/konsortium-plant-100-mw-wasserstoffelektrolyse-in-hamburg-233.html (accessed on 1 November 2021).
- Department of Forestry, Fisheries and the Environment. Minister Molewa Together with SASOL and Air Liquide Inaugurate World’s First Largest Oxygen Production Plant in Secunda. 2018. Available online: https://www.environment.gov.za/events/department_activities/molewa_sasolairliquide_oxygenplant_secunda#:~:text=Introduction%20and%20background%20Air%20Liquide%20recently%20started%20the,to%205%2C800%20tonnes%20per%20day%20at%20sea%20level%29. (accessed on 1 November 2021).
- Kemfert, C. Germany must go back to its low-carbon future. Nature 2017, 549, 26–27. [Google Scholar] [CrossRef] [Green Version]
- Rochelle, G.T. Conventional amine scrubbing for CO2 capture. In Absorption-Based Post-combustion Capture of Carbon Dioxide; Elsevier: Amsterdam, The Netherlands, 2016; pp. 35–67. [Google Scholar]
- Alie, C.; Backham, L.; Croiset, E.; Douglas, P.L. Simulation of CO2 capture using MEA scrubbing: A flowsheet decomposition method. Energy Convers. Manag. 2005, 46, 475–487. [Google Scholar] [CrossRef]
- Steynberg, A.P. Introduction to fischer-tropsch technology. In Studies in Surface Science and Catalysis, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Bpb. Gaspipeline Nabucco—Abkommen Unterzeichnet. 2009. Available online: https://www.bpb.de/politik/hintergrund-aktuell/69347/gaspipeline-nabucco-abkommen-unterzeichnet-13-07-2009 (accessed on 1 November 2021).
- Krieg, D. Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff; Forschungszentrum Jülich: Jülich, Germany, 2012. [Google Scholar]
- VCI. Die Generationenaufgabe: Vision Green Deal. Available online: https://www.vci.de/themen/europa/green-deal/die-generationenaufgabe-vision-green-deal.jsp (accessed on 1 November 2021).
- Statistisches Bundesamt. DESTATIS. Available online: https://www.destatis.de/DE/Home/_inhalt.html (accessed on 1 November 2021).
- Statista GmbH. STATISTA. Available online: https://de.statista.com/ (accessed on 1 November 2021).
- Robinius, M.; Markewitz, P.; Lopion, P.; Kullmann, F.; Heuser, P.M.; Syranidis, K. Kosteneffiziente und klimagerechteTransformationsstrategien für das deutsche Energiesystem bis zum Jahr 2050. Forsch. Jülich GmbH. 2019. Available online: https://www.fz-juelich.de/iek/iek-3/DE/News/TransformationStrategies2050/_node.html (accessed on 1 November 2021).
- Hoffmann, S. Der European Green Deal—Perspektive für die Industrie? Available online: https://www.process.vogel.de/der-european-green-deal-perspektive-fuer-die-industrie-a-908218/ (accessed on 1 November 2021).
- Döschner, J. Wasserstoff-Nutzung “Champagner unter den Energieträgern”. 2020. Available online: https://www.tagesschau.de/wirtschaft/wasserstoff-technologie-101.html (accessed on 1 November 2021).
- Bidder, B. Deutschlands 200-Milliarden-Schatz. 2021. Available online: https://www.spiegel.de/wirtschaft/subventionen-wo-deutschland-mehr-als-200-milliarden-euro-an-zweifelhaften-ausgaben-einsparen-koennte-a-1c87b301-75fd-429b-a01d-2589bae56d9f (accessed on 1 November 2021).
- Manager Magazin. 65 Milliarden Euro Umweltschädliche Subventionen. 2021. Available online: https://www.manager-magazin.de/politik/deutschland/umweltbundesamt-steuerverguenstigungen-fuer-pkw-fluege-und-industrie-sollten-enden-a-081ec723-50e7-4f8d-88a3-087dc3fa0f0e (accessed on 1 November 2021).
- Stephan, D. Noch kurz die Welt Retten? Warum die Defossilierung von der Chemie Abhängt. 2020. Available online: https://www.process.vogel.de/noch-kurz-die-welt-retten-warum-die-defossilierung-von-der-chemie-abhaengt-a-977886/ (accessed on 1 November 2021).
- Der Tagesspiegel. Altmaier: Energiewende Könnte eine Billion Euro Kosten. Available online: https://www.tagesspiegel.de/politik/stromversorgung-altmaier-energiewende-koennte-eine-billion-euro-kosten/7810322.html (accessed on 1 November 2021).
- Pötter, B. Das Billionending. 2014. Available online: https://taz.de/Kosten-der-Energiewende/!5031300/ (accessed on 1 November 2021).
- Reuter, B. Wo sich Altmaier bei der Energiewende Verrechnet. 2013. Available online: https://www.wiwo.de/technologie/green/1-billion-wo-sich-altmaier-bei-der-energiewende-verrechnet/13545494.html (accessed on 1 November 2021).
- Walzer, M.; Geipel-Kern, A. Wie Digitalisierung der Schlüssel zur Defossilierung Wird. 2021. Available online: https://www.process.vogel.de/wie-digitalisierung-der-schluessel-zur-defossilierung-wird-a-1063401/ (accessed on 1 November 2021).
- Tata Consultancy Services Deutschland. Nachhaltig Geht nur Digital: Wie Deutschland mit KI und Co. die Zukunft Gestaltet. Available online: https://www.tcs.com/content/dam/tcs-germany/pdf/TrendstudieDigitalisierung/2021_TCS-Studie_Nachhaltigkeit_digital.pdf (accessed on 1 November 2021).
- Mühlenkamp, S.; Ernhofer, W. Neues im Feld, Roboter und Informationsmodelle—Prozessautomatisierung “Wichtiger denn je”. 2021. Available online: https://www.process.vogel.de/informationen-sind-basis-fuer-digitalisierung-in-der-prozessindustrie-a-1072679/?cmp=nl-98&uuid (accessed on 1 November 2021).
- Bröring, S.; Baum, C.M.; Butkowski, O.K.; Kircher, M. Criteria for the Success of the Bioeconomy. In Bioeconomy for Beginners; Pietzsch, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 159–176. [Google Scholar]
- Saeidi, S.; Nikoo, M.K.; Mirvakili, A.; Bahrani, S.; Saidina Amin, N.A.; Rahimpour, M.R. Recent advances in reactors for low-temperature Fischer-Tropsch synthesis: Process intensification perspective. Rev. Chem. Eng. 2015, 31, 209–238. [Google Scholar] [CrossRef]
- Peacock, M.; Paterson, J.; Reed, L.; Davies, S.; Carter, S.; Coe, A.; Clarkson, J. Innovation in Fischer–Tropsch: Developing Fundamental Understanding to Support Commercial Opportunities. Top. Catal. 2020, 63, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.; Coe, A.; Paterson, J. Innovation in Fischer-Tropsch: A Sustainable Approach to Fuels Production: A cost-effective method of converting any carbon source into high-quality liquid hydrocarbon fuels. Johns. Matthey Technol. Rev. 2021, 65, 395–403. [Google Scholar] [CrossRef]
- Banken, R.; Stokes, R.G. Die Entstehung des Wasserstoff-Pipelinenetzes im Ruhrgebiet 1938–1980. 2018. Available online: https://nwbib.de/HT019830035 (accessed on 1 November 2021).
HT Heat | MT Heat | LT Heat | |
---|---|---|---|
Biomass | 72% | 17% | 26% |
Electricity | - | 42% | 51% |
Methane | - | - | - |
Waste | - | 41% | 16% |
Hydrogen | 22% | - | 7% |
Others | 6% | - | - |
Sum | 353 TWh | 77 TWh | 53 TWh |
Resource | Category | Primary Energy | Resource | Sum |
---|---|---|---|---|
Electricity | Mio jato | - | - | 0.0 |
PJ | 189.4 | - | 189.4 | |
TWh | 52.6 | - | 52.6 | |
GWP Mio t | 21.5 | - | 21.5 | |
Natural Gas | Mio jato | 7.2 | 3.2 | 10.4 |
PJ | 302.4 | 133.6 | 436.0 | |
TWh | 84.0 | 37.1 | 121.1 | |
GWP Mio t | 16.9 | - | 16.9 | |
Naphtha | Mio jato | 1.0 | 13.3 | 14.3 |
PJ | 43.2 | 556.9 | 600.1 | |
TWh | 12.0 | 154.7 | 166.7 | |
GWP Mio t | 3.2 | - | 3.2 | |
Hard Coal | Mio jato | 0.4 | 0.2 | 0.5 |
PJ | 10.8 | 4.4 | 15.2 | |
TWh | 3.0 | 1.2 | 4.2 | |
GWP Mio t | 1.1 | 1.1 | ||
Brown Coal | Mio jato | 0.3 | 0.2 | 0.4 |
PJ | 8.6 | 4.4 | 13.0 | |
TWh | 2.4 | 1.2 | 3.6 | |
GWP Mio t | 0.9 | - | 0.9 | |
Others | Mio jato | 5.6 | - | 5.6 |
PJ | 165.6 | - | 165.6 | |
TWh | 46.0 | - | 46.0 | |
GWP Mio t | 18.8 | - | 18.8 | |
Renewable Resources | Mio jato | - | 2.6 | 2.6 |
PJ | - | - | 0.0 | |
TWh | - | - | 0.0 | |
GWP Mio t | - | - | 0.0 | |
Sum | Mio jato | 14.6 | 19.4 | 34.0 |
PJ | 720.0 | 699.2 | 1419.2 | |
TWh | 200.0 | 194.2 | 394.2 | |
GWP Mio t | 62.2 | - | 62.2 |
Resource | Category | Primary Energy | Resources | Sum |
---|---|---|---|---|
Ammonia | Mio jato | - | - | 0 |
PJ | 2465 | - | 2465 | |
TWh | 685 | - | 685 | |
GWP Mio t | - | - | 0 | |
Fossil Resources | Mio jato | - | - | 0 |
PJ | 74 | - | 74 | |
TWh | 21 | - | 21 | |
GWP Mio t | - | - | 0 | |
District Heating | Mio jato | - | - | 0 |
PJ | 87 | - | 87 | |
TWh | 24 | - | 24 | |
GWP Mio t | - | - | 0 | |
Renewable Fuels | Mio jato | - | - | 0 |
PJ | 124 | - | 124 | |
TWh | 34 | - | 34 | |
GWP Mio t | 0 | - | 0 | |
Waste Plastics | Mio jato | 3 | - | 3 |
PJ | 70 | - | 70 | |
TWh | 19 | - | 19 | |
GWP Mio t | 0 | - | 0 | |
Biomass | Mio jato | 11 | - | 11 |
PJ | 205 | - | 205 | |
TWh | 57 | - | 57 | |
GWP Mio t | 0 | - | 0 | |
CO2 | Mio jato | - | 55.00 | 55 |
PJ | - | - | 0 | |
TWh | - | - | 0 | |
GWP Mio t | - | - | 0 | |
Sum | Mio jato | 14 | 55 | 55 |
PJ | 3024 | 0 | 3024 | |
TWh | 840 | 0 | 840 | |
GWP Mio t | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, A.; Köster, D.; Strube, J. Climate Neutrality Concepts for the German Chemical–Pharmaceutical Industry. Processes 2022, 10, 467. https://doi.org/10.3390/pr10030467
Schmidt A, Köster D, Strube J. Climate Neutrality Concepts for the German Chemical–Pharmaceutical Industry. Processes. 2022; 10(3):467. https://doi.org/10.3390/pr10030467
Chicago/Turabian StyleSchmidt, Axel, Dirk Köster, and Jochen Strube. 2022. "Climate Neutrality Concepts for the German Chemical–Pharmaceutical Industry" Processes 10, no. 3: 467. https://doi.org/10.3390/pr10030467
APA StyleSchmidt, A., Köster, D., & Strube, J. (2022). Climate Neutrality Concepts for the German Chemical–Pharmaceutical Industry. Processes, 10(3), 467. https://doi.org/10.3390/pr10030467