Physico-Chemical Properties of Red Pepper (Capsicum annuum L.) as Influenced by Different Drying Methods and Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drying Methods
2.1.1. Sun Drying
2.1.2. Solar Drying
2.1.3. Oven Drying
2.2. Physico-Chemical Analysis
2.2.1. Time Taken to Reach Safe Moisture (8–10%)
2.2.2. Colour Values (L*, a*, b*)
2.2.3. Texture Analysis (g)
2.2.4. Pungency Measured by Sensory Evaluation in Hedonic Scale or Organoleptic Score
2.2.5. Ascorbic Acid (mg/100 g)
2.2.6. Oleoresin (%)
2.2.7. Mathematical Models
2.3. Statistical Analysis
3. Results and Discussion
3.1. Time Taken to Reach the Safe Moisture Content (8–10%)
3.2. Color Values (L*, a*, b*)
3.3. Texture (g)
3.4. Sensory Score of Pungency (1–9)
3.5. Ascorbic Acid (mg/100 g)
3.6. Oleoresin Content (%)
3.7. Mathematical Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chattopadhyay, A.; Sharangi, A.B.; Dai, N.; Dutta, S. Diversity of genetic resources and genetic association analyses of green and dry chillies of eastern india. Chil. J. Agric. Res. 2011, 71, 350–356. [Google Scholar] [CrossRef]
- Arora, S.; Bharti, S.; Sehgal, V. Convective drying kinetics of red chillies. Dry. Technol. 2006, 24, 189–193. [Google Scholar] [CrossRef]
- Condorı, M.; Echazu, R.; Saravia, L. Solar drying of sweet pepper and garlic using the tunnel greenhouse drier. Renew. Energy 2001, 22, 447–460. [Google Scholar] [CrossRef]
- Osunde, Z.D. Musa Makama, A. Assessment of changes in nutritional values of locally sun-dried vegetables. AUJT 2007, 10, 248–253. [Google Scholar]
- Gupta, P.; Ahmed, J.; Shivhare, U.S.; Raghavan, G.S.V. Drying characteristics of red chilli. Dry. Technol. 2002, 20, 1975–1987. [Google Scholar] [CrossRef]
- Bircan, C. The determination of aflatoxins in spices by immunoaffinity column extraction using HPLC. Int. J. Food Sci. Technol. 2005, 40, 929–934. [Google Scholar] [CrossRef]
- Vega-Galvez, A.; Lemus-Mondaca, R.; Bilbao-Sáinz, C.; Fito, P.; Andrés, A.M. Effect of air drying temperature on the quality of rehydrated dried red bell pepper (var. Lamuyo). J. Food Eng. 2008, 85, 42–50. [Google Scholar] [CrossRef]
- Kaleemullah, S.; Kailappan, R. Drying kinetics of red chillies in a rotary dryer. Biosyst. Eng. 2005, 92, 15–23. [Google Scholar] [CrossRef]
- Ahmed, J.; Shivhare, U. Effect of pre-treatment on drying characteristics and colour of dehydrated green chillis. J. Food Sci. Technol. Mysore 2001, 38, 504–506. [Google Scholar]
- Arora, S.; Bharti, S. Effect of mechanical drying on quality of chilli varieties. J. Food Sci. Technol. Mysore 2005, 42, 179–182. [Google Scholar]
- Di Scala, K.; Crapiste, G. Drying kinetics and quality changes during drying of red pepper. LWT-Food Sci. Technol. 2008, 41, 789–795. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- McGuire, R.G. Reporting of objective color measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- Joshi, V. Sensory Science: Principles and Applications in Evaluation of Food; Agrotech Publisher: Udaipur, India, 2006; p. 527. [Google Scholar]
- Sadasivam, S.; Balasubramanian, T. Practical Manual in Biochemistry; Tamil Nadu Agricultural University: Coimbatore, India, 1987; p. 14. [Google Scholar]
- Raj, A.C.; Sharangi, A.B.; Das, A.; Pramanik, K.; Upadhyay, T.K.; Almutairi, M.; Khan, M.I.; Ahmad, I.; Kausar, M.A.; Saeed, M. Assessing the Genetic Divergence of Onion (Allium Cepa L.) through Morpho-Physiological and Molecular Markers. Sustainability 2022, 14, 1131. [Google Scholar] [CrossRef]
- Ranganna, S. Handbook of Analysis and Quality Control for Fruit and Vegetable Products; Tata McGraw-Hill Publishing Company: New Delhi, India, 1986; pp. 124–125. [Google Scholar]
- Alibas, I. Selection of the best suitable thin-layer drying mathematical model for vacuum dried red pepper. J. Biol. Environ. Sci. 2012, 6, 161–170. [Google Scholar]
- Arslan, D.; Özcan, M. Dehydration of red bell-pepper (Capsicum annuum L.): Change in drying behavior, colour and antioxidant content. Food Bioprod. Processing 2011, 89, 504–513. [Google Scholar]
- Artnaseaw, A.S.; Theerakulpisut, S.; Benjapiyaporn, C. Development of a vacuum heat pump dryer for drying chilli. Biosyst. Eng. 2010, 105, 130–138. [Google Scholar] [CrossRef]
- Lee, J.H.; Zuo, L. Mathematical modeling on vacuum drying of Zizyphus jujuba Miller slices. J. Food Sci. Technol. 2013, 50, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Panse, V.G.; Sukhatme, P.V. Statistical methods for agricultural workers. Stat. Methods Agric. Work. 1954, 48, 323. [Google Scholar]
- Sacilik, K.; Elicin, A.K. The thin layer drying characteristics of organic apple slices. J. Food Eng. 2006, 73, 281–289. [Google Scholar] [CrossRef]
- Wade, N.; Wane, S.; Kshirsagar, S. Comparative study of drying characteristics in chillies. Indian J. Sci. Res. Technol. 2014, 2, 105–111. [Google Scholar]
- Gupta, S.; Sharma, S.R.; Mittal, T.C.; Jindal, S.K.; Gupta, S.K. Study of drying behaviour in red chillies. Green Farming 2017, 8, 1364–1369. [Google Scholar]
- Carbonell, J.; Piñaga, F.; Yusá, V.; Peña, J. The dehydration of paprika with ambient and heated air and the kinetics of colour degradation during storage. J. Food Eng. 1986, 5, 179–193. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer: Berlin/Heidelberg, Germany, 2009; p. 519. [Google Scholar]
- Wiriya, P.; Paiboon, T.; Somchart, S. Effect of drying air temperature and chemical pretreatments on quality of dried chilli. Int. Food Res. J. 2009, 16, 441–454. [Google Scholar]
- Getahun, E.; Delele, M.A.; Gabbiye, N.; Fanta, S.W.; Vanierschot, M. Studying the drying characteristics and quality attributes of chilli pepper at different maturity stages: Experimental and mechanistic model. Case Stud. Therm. Eng. 2021, 26, 101052. [Google Scholar] [CrossRef]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Topuz, A.; Ozdemir, F. Influences of gamma-irradiation and storage on the carotenoids of sun-dried and dehydrated paprika. J. Agric. Food Chem. 2003, 51, 4972–4977. [Google Scholar] [CrossRef]
- Maurya, V.K.; Gothandam, K.M.; Ranjan, V.; Shakya, A.; Pareek, S. Effect of drying methods (microwave vacuum, freeze, hot air and sun drying) on physical, chemical and nutritional attributes of five pepper (Capsicum annuum var. annuum) cultivars. J. Sci. Food Agric. 2018, 98, 3492–3500. [Google Scholar] [CrossRef]
- Topuz, A.; Ozdemir, F. Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in Turkey. J. Food Compos. Anal. 2007, 20, 596–602. [Google Scholar] [CrossRef]
- Papageorge, L.M.; McFeeters, R.F.; Fleming, H.P. Factors Influencing texture retention of salt-free, acidified, red bell peppers during storage. J. Agric Food Chem. 2003, 51, 1460–1463. [Google Scholar] [CrossRef]
- Castro, S.M.; Saraiva, J.A.; Lopes-Da-Silva, J.A.; Delgadillo, I.; Van Loey, A.; Smout, C.; Hendrickx, M. Effect of thermal blanching and of high pressure treatments on sweet green and red bell pepper fruits (Capsicum annuum L.). Food Chem. 2008, 107, 1436–1449. [Google Scholar] [CrossRef]
- Daood, H.G.; Vinkler, M.; Markus, F.; Hebshi, E.; Biacs, P. Antioxidant vitamin content of spice red pepper (paprika) as affected by technological and varietal factors. Food Chem. 1996, 55, 365–372. [Google Scholar] [CrossRef]
- Apriyantono, A.; Ames, J.M. Xylose-lysine model systems: The effect of pH on the volatile reaction products. J. Sci. Food Agric. 1993, 61, 477–484. [Google Scholar] [CrossRef]
- Elmore, J.S.; Srisajjalertwaja, S.; Dodson, A.T.; Apichartsarangkoon, A.; Mottram, D.S. Novel esters in Thai green chilli. In Proceedings of the 12th Werman Flavour Research Symposium; Blank, I., Wust, M., Yeretzian, C., Eds.; Context Products Ltd.: Interlaken, Switzerland, 2008; pp. 459–462. [Google Scholar]
- Mangaraj, S.; Singh, A.; Samuel, D.V.K. Comparative performance evaluation of different drying methods for chillis. J. Food Sci. Technol. 2001, 38, 296–299. [Google Scholar]
- Toontom, N.; Meenune, M.; Posri, W.; Lertsiri, S. Effect of drying method on physical and chemical quality, hotness and volatile flavour characteristics of dried chilli. Int. Food Res. J. 2012, 19, 1023. [Google Scholar]
- Fennema, O.R. Food Chemistry; Marcel Dekker. Inc.: New York, NY, USA, 1996. [Google Scholar]
- Gregory, J.F., III. Vitamins. In Food Chemistry; Fennema, O.R., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1996; Volume 3, pp. 431–530. [Google Scholar]
- Koppisetty, R.P. Effect of Drying Methods, Chemicals Irradiation and Packing Materials on Quality and Storage Life Dry Chillies. APAU. Hyderabad 2008. [Google Scholar]
- Fudholi, A.; Othman, M.Y.; Ruslan, M.H.; Sopian, K. Drying of Malaysian Capsicum annuum L.(red) dried by open and solar drying. Int. J. Photoenergy 2013, 2013, 167895. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Wei, S.; Liu, H.; Zang, Y.; Cao, Y.; Zhu, R.; Zheng, X.; Yao, X. The kinetics of nutritional quality changes during winter jujube slices drying process. Qual. Assur. Saf. Crops Foods 2021, 13, 73–82. [Google Scholar] [CrossRef]
Name of Model | Expression | References |
---|---|---|
1. Lewis | MR = exp(–k t) | [18,19] |
2. Page | MR = exp(–k tn) | [20,21] |
3. Modified Page | MR = exp(–k t)n | [18,20] |
4. Henderson and Pabis | MR = a exp (–k t) | [18,21] |
Treatments | L | a | b | ||||||
---|---|---|---|---|---|---|---|---|---|
2018–2019 | 2019–2020 | Pooled | 2018–2019 | 2019–2020 | Pooled | 2018–2019 | 2019–2020 | Pooled | |
Fresh chilli | 29.64 | 28.42 | 29.03 | 43.58 | 41.28 | 42.43 | 24.23 | 23.78 | 24.00 |
Sun drying | 10.83 | 10.51 | 10.67 | 17.12 | 15.59 | 16.36 | 9.27 | 9.63 | 9.45 |
Solar drying | 14.37 | 13.90 | 14.13 | 21.74 | 18.94 | 20.34 | 12.66 | 12.39 | 12.53 |
Oven drying at 50 °C | 17.21 | 16.11 | 16.66 | 24.26 | 22.43 | 23.35 | 15.54 | 14.44 | 14.99 |
Oven drying at 55 °C | 19.54 | 18.12 | 18.83 | 26.56 | 24.17 | 25.37 | 17.08 | 15.95 | 16.52 |
Oven drying at 60 °C | 21.37 | 19.86 | 20.62 | 28.98 | 26.43 | 27.71 | 18.79 | 17.46 | 18.12 |
Oven drying at 65 °C | 25.40 | 23.69 | 24.55 | 33.91 | 30.36 | 32.14 | 21.56 | 19.50 | 20.53 |
Oven drying at 70 °C | 23.50 | 21.57 | 22.54 | 31.09 | 28.53 | 29.81 | 20.42 | 18.53 | 19.47 |
SEM(±) | 0.115 | 0.265 | 0.14 | 0.317 | 0.542 | 0.352 | 0.189 | 0.331 | 0.222 |
C.D (0.05) | 0.357 | 0.825 | 0.436 | 0.987 | 1.689 | 1.097 | 0.59 | 1.032 | 0.691 |
Treatments | Texture (g) | Sensory Score of Pungency (1–9) | ||||
---|---|---|---|---|---|---|
2018–2019 | 2019–2020 | Pooled | 2018–2019 | 2019–2020 | Pooled | |
Fresh chilli | 2818.39 | 2923.88 | 2871.13 | 6.86 | 6.76 | 6.81 |
Sun drying | 1165.24 | 1196.38 | 1180.81 | 7.14 | 7.17 | 7.15 |
Solar drying | 1047.22 | 1051.94 | 1038.58 | 7.31 | 7.24 | 7.27 |
Oven drying at 50 °C | 1025.95 | 1006.26 | 1027.11 | 7.45 | 7.42 | 7.44 |
Oven drying at 55 °C | 967.25 | 932.09 | 949.67 | 7.58 | 7.54 | 7.56 |
Oven drying at 60 °C | 921.26 | 878.38 | 899.82 | 7.69 | 7.65 | 7.67 |
Oven drying at 65 °C | 830.57 | 815.68 | 823.13 | 7.86 | 7.84 | 7.85 |
Oven drying at 70 °C | 755.78 | 723.31 | 739.55 | 7.76 | 7.73 | 7.75 |
SEM(±) | 9.966 | 8.773 | 7.742 | 0.003 | 0.001 | 0.002 |
C.D (0.05) | 31.048 | 27.332 | 24.119 | 0.011 | 0.004 | 0.006 |
Treatments | Ascorbic Acid (mg/100 g) | Oleoresin Content (%) | ||||
---|---|---|---|---|---|---|
2018–2019 | 2019–2020 | Pooled | 2018–2019 | 2019–2020 | Pooled | |
Fresh chilli | 147.86 | 147.12 | 147.49 | 30.59 | 30.51 | 30.55 |
Sun drying | 40.29 | 41.24 | 40.77 | 7.53 | 7.42 | 7.48 |
Solar drying | 42.64 | 44.81 | 43.73 | 8.44 | 8.77 | 8.61 |
Oven drying at 50 °C | 55.72 | 56.39 | 56.06 | 10.84 | 10.60 | 10.72 |
Oven drying at 55 °C | 52.97 | 53.14 | 53.06 | 10.39 | 10.47 | 10.43 |
Oven drying at 60 °C | 49.15 | 50.38 | 49.77 | 9.70 | 9.69 | 9.70 |
Oven drying at 65 °C | 46.67 | 47.67 | 47.17 | 9.32 | 9.43 | 9.38 |
Oven drying at 70 °C | 44.58 | 45.64 | 45.11 | 9.02 | 9.03 | 9.03 |
SEM(±) | 0.291 | 0.347 | 0.255 | 0.189 | 0.121 | 0.118 |
C.D (0.05) | 0.906 | 1.082 | 0.795 | 0.588 | 0.376 | 0.369 |
Drying Method | Model | k | n | R2 | χ2 | RMSE | a |
---|---|---|---|---|---|---|---|
Sun drying | Lewis | 0.002 | 0.968 | 0.035271 | 0.183265 | ||
page | 0.000020073 | 1.627 | 0.9775 | 0.001781 | 0.040624 | ||
Modified page | 0.001294 | 1.627 | 0.9775 | 0.00178 | 0.040619 | ||
Henderson & Pabis | 0.002 | 0.968 | 0.019716 | 0.13674 | 1.44725 | ||
Solar drying | Lewis | 0.002 | 0.924 | 0.024381 | 0.151016 | ||
page | 0.0000641775 | 1.538 | 0.9615 | 0.003241 | 0.054975 | ||
Modified page | 0.001571 | 1.538 | 0.9615 | 0.003241 | 0.054975 | ||
Henderson & Pabis | 0.002 | 0.924 | 0.045256 | 0.205647 | 1.533675 | ||
Oven drying at 50 °C | Lewis | 0.003 | 0.9615 | 0.029898 | 0.166107 | ||
page | 0.00001985 | 1.769 | 0.9775 | 0.001648 | 0.038947 | ||
Modified page | 0.002188 | 1.769 | 0.9775 | 0.001648 | 0.038948 | ||
Henderson &Pabis | 0.003 | 0.9615 | 0.044506 | 0.202443 | 1.572445 | ||
Oven drying at 55 °C | Lewis | 0.004 | 0.964 | 0.042182 | 0.19663 | ||
page | 0.0000242283 | 1.7765 | 0.982 | 0.001605 | 0.038349 | ||
Modified page | 0.002498 | 1.7765 | 0.982 | 0.00162 | 0.038534 | ||
Henderson & Pabis | 0.004 | 0.964 | 0.038484 | 0.187816 | 1.555825 | ||
Oven drying at 60 °C | Lewis | 0.004 | 0.9645 | 0.026134 | 0.154122 | ||
page | 0.0000376625 | 1.7455 | 0.9755 | 0.002667 | 0.048719 | ||
Modified page | 0.0028777 | 1.7455 | 0.9755 | 0.002668 | 0.048734 | ||
Henderson & Pabis | 0.004 | 0.9645 | 0.032407 | 0.170892 | 1.481505 | ||
Oven drying at 65 °C | Lewis | 0.0045 | 0.9705 | 0.032362 | 0.165709 | ||
page | 0.00006007625 | 1.7815 | 0.9905 | 0.000818 | 0.027261 | ||
Modified page | 0.0030645 | 1.7815 | 0.9905 | 0.000832 | 0.027461 | ||
Henderson & Pabis | 0.0045 | 0.9705 | 0.041545 | 0.191818 | 1.531435 | ||
Oven drying at 70 °C | Lewis | 0.005 | 0.9735 | 0.021161 | 0.136996 | ||
page | 0.0000530275 | 1.7595 | 0.9835 | 0.001841 | 0.040435 | ||
Modified page | 0.0036469 | 1.7595 | 0.9835 | 0.001965 | 0.041793 | ||
Henderson & Pabis | 0.005 | 0.9735 | 0.026833 | 0.154369 | 1.424835 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
A, A.; Sharangi, A.B.; Upadhyay, T.K.; Alshammari, N.; Saeed, M.; Al-Keridis, L.A. Physico-Chemical Properties of Red Pepper (Capsicum annuum L.) as Influenced by Different Drying Methods and Temperatures. Processes 2022, 10, 484. https://doi.org/10.3390/pr10030484
A A, Sharangi AB, Upadhyay TK, Alshammari N, Saeed M, Al-Keridis LA. Physico-Chemical Properties of Red Pepper (Capsicum annuum L.) as Influenced by Different Drying Methods and Temperatures. Processes. 2022; 10(3):484. https://doi.org/10.3390/pr10030484
Chicago/Turabian StyleA, Anjaneyulu, Amit Baran Sharangi, Tarun Kumar Upadhyay, Nawaf Alshammari, Mohd Saeed, and Lamya Ahmed Al-Keridis. 2022. "Physico-Chemical Properties of Red Pepper (Capsicum annuum L.) as Influenced by Different Drying Methods and Temperatures" Processes 10, no. 3: 484. https://doi.org/10.3390/pr10030484
APA StyleA, A., Sharangi, A. B., Upadhyay, T. K., Alshammari, N., Saeed, M., & Al-Keridis, L. A. (2022). Physico-Chemical Properties of Red Pepper (Capsicum annuum L.) as Influenced by Different Drying Methods and Temperatures. Processes, 10(3), 484. https://doi.org/10.3390/pr10030484