Evaluation Residual Compressive Strength of Tunnel Lining Concrete Structure after Fire Damage Based on Ultrasonic Pulse Velocity and Shear-Wave Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. UPV Test and Shear-Wave Tomography Equipment
2.2. SEM Analyses
3. Results and Discussion
3.1. UPV and Constant Heating Time
3.2. Post-Fire Specimen Micro-Phase Analyses
3.3. Microstructure and Constant Heating Time
3.4. Concrete Lining Shear-Wave Tomography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Savov, K.; Lackner, R.; Mang, H.A. Stability assessment of shallow tunnels subjected to fire load. Fire Saf. J. 2005, 40, 745–763. [Google Scholar] [CrossRef]
- Faure, R.M.; Karray, M. Investigation of the concrete lining after the Mont Blanc tunnel fire. Struct. Eng. Int. 2007, 2, 123–132. [Google Scholar] [CrossRef]
- Sakkas, K.; Vagiokas, N.; Tsiamouras, K.; Mandalozis, D.; Benardos, A.; Nomikos, P. In-situ fire test to assess tunnel lining fire resistance. Tunn. Undergr. Space Technol. 2019, 85, 368–374. [Google Scholar] [CrossRef]
- Albrektsson, J.; Flansbjer, M.; Lindqvist, J.E.; Jansson, R. Assessment of Concrete Structures after Fire; SP Technical Research Institute of Sweden: Borås, Sweden, 2011. [Google Scholar]
- Oneschkow, N. Fatigue behaviour of high-strength concrete with respect to strain and stiffness. Int. J. Fatigue 2016, 87, 38–49. [Google Scholar] [CrossRef]
- Sýkora, J.; Jarušková, D.; Šejnoha, M.; Šejnoha, J. Fire risk analysis focused on damage of the tunnel lining. Fire Saf. J. 2018, 95, 51–65. [Google Scholar] [CrossRef]
- Boström, L.; Larsen, C.K. Concrete for tunnel linings exposed to severe fire exposure. Fire Technol. 2006, 42, 351–362. [Google Scholar] [CrossRef]
- Yan, Z.G.; Zhu, H.H.; Ju, J.W.; Ding, W.Q. Full-scale fire tests of RC metro shield TBM tunnel linings. Constr. Build. Mater. 2012, 36, 484–494. [Google Scholar] [CrossRef]
- Yan, Z.G.; Zhu, H.H.; Ju, W.J. Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures. Constr. Build. Mater. 2013, 38, 610–618. [Google Scholar] [CrossRef]
- Hua, N.; Tessari, A.; Khorasani, N.E. Characterizing damage to a concrete liner during a tunnel fire. Tunn. Undergr. Space Technol. 2021, 109, 103761. [Google Scholar] [CrossRef]
- Hua, N.; Khorasani, N.E.; Tessari, A.; Ranade, R. Experimental study of fire damage to reinforced concrete tunnel slabs. Fire Saf. J. 2022, 127, 103504. [Google Scholar] [CrossRef]
- Alhawat, H.; Hamid, R.; Baharom, S.; Azmi, M.R.; Kaish, A.B.M.A. Thermal behaviour of unloaded concrete tunnel lining through an innovative large-scale tunnel fire experimental testing setup. Constr. Build. Mater. 2021, 283, 122718. [Google Scholar] [CrossRef]
- Felicetti, R. Assessment methods of fire damages in concrete tunnel linings. Fire Technol. 2013, 49, 509–529. [Google Scholar] [CrossRef]
- Qiao, R.; Shao, Z.; Liu, F.; Wei, W. Damage evolution and safety assessment of tunnel lining subjected to long-duration fire. Tunn. Undergr. Space Technol. 2019, 83, 354–363. [Google Scholar] [CrossRef]
- Hwang, E.; Kim, G.; Choe, G.; Yoon, M.; Gucunski, N.; Nam, J. Evaluation of concrete degradation depending on heating conditions by ultrasonic pulse velocity. Constr. Build. Mater. 2018, 171, 511–520. [Google Scholar] [CrossRef]
- Silva, F.A.N.; Nogueira, C.L.; Silva, J.A.; Araújo, A.V.; Azevedo, A.J.; Delgado, J.M.P.Q. Ultrasonic assessment of damage in concrete under compressive and thermal loading using longitudinal and transverse waves. Russ. J. Nondestruct. 2019, 55, 808–816. [Google Scholar] [CrossRef]
- Bogas, J.A.; Gomes, M.G.; Gomes, A. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics 2013, 53, 962–972. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Sagar S, P.; Kumar, A.; Gupta, S.K.; Kumar, S. Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser. J. Build. Eng. 2018, 16, 39–44. [Google Scholar] [CrossRef]
- Al-Nu’man, B.S.; Aziz, B.R.; Abdulla, S.A.; Khaleel, S.E. Compressive strength formula for concrete using ultrasonic pulse velocity. Int. J. Eng. Trends Technol. 2015, 26, 9–13. [Google Scholar] [CrossRef]
- Yang, H.; Lin, Y.; Hsiao, C.; Liu, J.Y. Evaluating residual compressive strength of concrete at elevated temperatures using ultrasonic pulse velocity. Fire Saf. J. 2009, 44, 121–130. [Google Scholar] [CrossRef]
- Lin, Y.; Hsiao, C.; Yang, H.; Lin, Y. The effect of post-fire-curing on strength-velocity relationship for nondestructive assessment of fire-damaged concrete strength. Fire Saf. J. 2011, 46, 178–185. [Google Scholar] [CrossRef]
- Iqbal, H.W.; Khushnood, R.A.; Baloch, W.L.; Nawaz, A.; Tufail, R.F. Influence of graphite nano/micro platelets on the residual performance of high strength concrete exposed to elevated temperature. Constr. Build. Mater. 2020, 253, 119029. [Google Scholar] [CrossRef]
- Abed, M.; Brito, J.D. Evaluation of high-performance self-compacting concrete using alternative materials and exposed to elevated temperatures by non-destructive testing. J. Build. Eng. 2020, 32, 101720. [Google Scholar] [CrossRef]
- Chen, L.-H.; Chen, W.-C.; Chen, Y.-C.; Lin, H.-J.; Cai, C.-F.; Lei, M.-Y.; Wang, T.-C.; Hsu, K.-W. Using Ultrasonic Pulse and Artificial Intelligence to Investigate the Thermal-Induced Damage Characteristics of Concrete. Appl. Sci. 2018, 8, 1107. [Google Scholar] [CrossRef] [Green Version]
- Blumauer, U.; Hozjan, T.; Trtnik, G. Prediction of mechanical properties of limestone concrete after high temperature exposure with artificial neural networks. Adv. Concr. Constr. 2020, 10, 247–256. [Google Scholar]
- Ling, T.C.; Poon, C.S.; Kou, S.C. Influence of recycled glass content and curing conditions on the properties of self-compacting concrete after exposure to elevated temperatures. Cem. Concr. Compos. 2012, 34, 265–272. [Google Scholar] [CrossRef]
- Velay-Lizancos, M.; Martinez-Lage, I.; Azenha, M.; Vázquez-Burgo, P. Influence of temperature in the evolution of compressive strength and in its correlations with UPV in eco-concretes with recycled materials. Constr. Build. Mater. 2016, 124, 276–286. [Google Scholar] [CrossRef]
- Abraham, O.; Dérobert, X. Non-destructive testing of fired tunnel walls: The Mont-Blanc Tunnel case study. NDT&E Int. 2003, 36, 411–418. [Google Scholar]
- Park, S.J.; Yim, G.K.; Hong, J.; Kwak, H.G. Evaluation of residual tensile strength of fire-damaged concrete using a non-linear resonance vibration method. Mag. Concrete Res. 2015, 67, 235–246. [Google Scholar] [CrossRef]
- Du, S.; Zhang, Y.; Sun, Q.; Gong, W.; Geng, J.; Zhang, K. Experimental study on color change and compression strength of concrete tunnel lining in a fire. Tunn. Undergr. Space Techol. 2018, 71, 106–114. [Google Scholar] [CrossRef]
- Aldo, O.; Samokrutov, A.A.; Samokrutov, P.A. Assessment of concrete structures using the Mira and Eyecon ultrasonic shear wave devices and the SAFT-C image reconstruction technique. Constr. Build. Mater. 2013, 38, 1276–1291. [Google Scholar]
- Choi, P.; Kim, D.H.; Lee, B.H.; Won, M.C. Application of ultrasonic shear-wave tomography to identify horizontal crack or delamination in concrete pavement and bridge. Constr. Build. Mater. 2016, 121, 81–91. [Google Scholar] [CrossRef]
- Lin, S.; Shams, S.; Choi, H.; Azari, H. Ultrasonic imaging of multi-layer concrete structures. NDT&E Int. 2018, 98, 101–109. [Google Scholar]
- Chen, R.; Tran, K.T.; La, H.M.; Rawlinson, T.; Dinh, K. Detection of delamination and rebar debonding in concrete structures with ultrasonic SH-waveform tomography. Autom. Constr. 2022, 133, 104004. [Google Scholar] [CrossRef]
- GB 50010-2010; Code for Design of Concrete Structure. Ministry of Housing and Urban-Rural Development of P.R. China: Beijing, China, 2010.
- Zhai, Z.T. Ultrasonic Testing and Experimental Study on Damage of Lining Structure Concrete after Tunnel Fire. Master’s Thesis, China Jiliang University, Hangzhou, China, 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Chen, D.; Zhu, K.; Zhai, Z.; Xu, J.; Wu, L.; Hu, D.; Xu, W.; Huang, H. Evaluation Residual Compressive Strength of Tunnel Lining Concrete Structure after Fire Damage Based on Ultrasonic Pulse Velocity and Shear-Wave Tomography. Processes 2022, 10, 560. https://doi.org/10.3390/pr10030560
Wang Q, Chen D, Zhu K, Zhai Z, Xu J, Wu L, Hu D, Xu W, Huang H. Evaluation Residual Compressive Strength of Tunnel Lining Concrete Structure after Fire Damage Based on Ultrasonic Pulse Velocity and Shear-Wave Tomography. Processes. 2022; 10(3):560. https://doi.org/10.3390/pr10030560
Chicago/Turabian StyleWang, Qiang, Daqing Chen, Kai Zhu, Zitai Zhai, Juntao Xu, Linlin Wu, Dong Hu, Weirong Xu, and Huandong Huang. 2022. "Evaluation Residual Compressive Strength of Tunnel Lining Concrete Structure after Fire Damage Based on Ultrasonic Pulse Velocity and Shear-Wave Tomography" Processes 10, no. 3: 560. https://doi.org/10.3390/pr10030560
APA StyleWang, Q., Chen, D., Zhu, K., Zhai, Z., Xu, J., Wu, L., Hu, D., Xu, W., & Huang, H. (2022). Evaluation Residual Compressive Strength of Tunnel Lining Concrete Structure after Fire Damage Based on Ultrasonic Pulse Velocity and Shear-Wave Tomography. Processes, 10(3), 560. https://doi.org/10.3390/pr10030560