Frequency Response Estimation for Multiple Aircraft Control Loops Using Orthogonal Phase-Optimized Multisine Inputs
Abstract
:1. Introduction
2. Methods
2.1. Problem Statement
2.2. Multisine Excitation Inputs
2.3. Frequency Transforms
2.4. Direct Approach for Estimating Frequency Responses
2.5. Joint Input–Output Approach for Estimating Frequency Responses
2.6. Real-Time Estimation
2.7. Multiple Loop Estimation
3. Example
4. Conclusions
- 1.
- This approach can be used to estimate the bare-airframe dynamics from closed-loop data, the closed-loop dynamics, the broken-loop dynamics (opened at the mixer input or the sensor output) or other dynamics of interest;
- 2.
- These frequency response estimates can be computed in real time;
- 3.
- Frequency responses can be estimated for a single loop and multiple axes, multiple loops over a single axis or multiple loops and multiple axes. The simultaneous identification of multiple loops and multiple axes attains the most efficient test results and the most savings in time and costs.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFRC | Armstrong Flight Research Center |
AirSTAR | Airborne Subscale Transport Aircraft Research |
CFD | Computational Fluid Dynamics |
FCS | Flight Control System |
GAF | Generalized Aerodynamic Force |
IAWTM | Integrated Adaptive Wing Technology Maturation |
JIO | Joint Input–Output |
KEAS | Knots Equivalent Air Speed |
LaRC | Langley Research Center |
LBFD | Low-Boom Flight Demonstrator |
LFD | Linearized Frequency Domain |
max | Maximum |
MIMO | Multiple Input Multiple Output |
min | Minimum |
MUTT | Multi-Utility Technology Testbed |
NASA | National Aeronautics and Space Administration |
QueSST | Quiet SuperSonic Technology |
rms | root mean square |
RPF | Relative Peak Factor |
SIDPAC | System IDentification Programs for AirCraft |
SISO | Single Input Single Output |
UAM | Urban Air Mobility |
Symbols | |
Overall Multisine Gain | |
b | Wingspan, ft |
Mean Aerodynamic Chord, ft | |
, , | Nondimensional Drag, Lift, and Pitching Moment Coefficients |
∂ | Partial Derivative |
Frequency Response | |
h | Altitude, ft |
ℑ | Imaginary Part |
, , | Moments of Inertia, slug-ft |
, , | Products of Inertia, slug-ft |
j | Imaginary Number, |
Sets of Multisine Harmonics | |
M | Mach Number |
m | Aircraft Mass, slug |
n | Number of Elements |
q | Pitch Rate, rad/s |
ℜ | Real Part |
Excitation Input | |
S | Wing Reference Area, ft |
T | Excitation Duration, s |
t | Time, s |
Input | |
V | True Airspeed, ft/s |
Longitudinal Center of Mass Position, in | |
Output | |
Greek | |
Angle of Attack, rad | |
Sampling Interval, s | |
Control Input | |
Normalized Power Spectrum | |
Phase Angle, rad | |
Frequency, rad/s | |
Harmonic Frequency, rad/s | |
Subscripts | |
0 | Trim or Initial Value |
a | Aileron |
Command | |
f | Flap |
l, r | Left and Right |
Power Level Angle | |
r | Rudder |
s | Stabilator |
Superscripts | |
Inverse | |
Estimated Value |
References
- McRuer, D.; Ashkenas, I.; Graham, D. Aircraft Dynamics and Automatic Control; Princeton University Press: Princeton, NJ, USA, 1973. [Google Scholar]
- Morelli, E.; Klein, V. Aircraft System Identification: Theory and Practice, 2nd ed.; Sunflyte Enterprises: Williamsburg, VA, USA, 2016. [Google Scholar]
- Grauer, J.; Morelli, E. Generic Global Aerodynamic Model for Aircraft. J. Aircr. 2015, 52, 13–20. [Google Scholar] [CrossRef]
- Jategaonkar, R. Flight Vehicle System Identification—Engineering Utility. J. Aircr. 2005, 42, 11. [Google Scholar] [CrossRef]
- Tischler, M.; Remple, R. Aircraft and Rotorcraft System Identification: Engineering Methods with Flight Test Examples, 2nd ed.; AIAA: Reston, VA, USA, 2012. [Google Scholar]
- Jategaonkar, R. Flight Vehicle System Identification: A Time-Domain Methodology, 2nd ed.; AIAA: Reston, VA, USA, 2015. [Google Scholar]
- Field, E.; Rossitto, K.; Hodgkinson, J. Flying Qualities Applications of Frequency Responses Identified from Flight Data. J. Aircr. 2004, 41, 711–720. [Google Scholar] [CrossRef]
- Iliff, K.; Maine, R. Uses of Parameter Estimation in Flight Test. J. Aircr. 1983, 20, 1043–1049. [Google Scholar] [CrossRef]
- Weiss, S.; Friehmelt, H.; Plaetschke, E.; Rohlf, D. X-31A System Identification Using Single-Surface Excitation at High Angles of Attack. J. Aircr. 1996, 33, 485–490. [Google Scholar] [CrossRef]
- Rohlf, D. Global Model Approach for X-31 VECTOR System Identification. J. Aircr. 2005, 42, 54–62. [Google Scholar] [CrossRef]
- Taylor, B.; Ratnayake, N. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Toronto, ON, Canada, 2–5 August 2010. Number 2010-7949. [Google Scholar] [CrossRef] [Green Version]
- Ratnayake, N.; Waggoner, E.; Taylor, B. Lateral-Directional Parameter Estimation on the X-48B Aircraft Using an Abstracted, Multi-Objective Effector Model. In Proceedings of the AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, 27–30 June 2011. Number 2011-3014. [Google Scholar] [CrossRef] [Green Version]
- Ratnayake, N.; Koshimoto, E.; Taylor, B. Multi-Axis Identifiability Using Single-Surface Parameter Estimation Maneuvers on the X-48B Blended Wing Body. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Portland, OR, USA, 8–11 August 2011. Number 2011-6273. [Google Scholar] [CrossRef] [Green Version]
- Bosworth, J.; West, J. Real-Time Open-Loop Frequency Response Analysis of Flight Test Data. In Proceedings of the AIAA Flight Testing Conference, Las Vegas, NV, USA, 2–4 April 1986. Number 86-9738. [Google Scholar] [CrossRef]
- Tischler, M.; Leung, J.; Dugan, D. Identification and Verification of Frequency-Domain Models for XV-15 Tilt-Rotor Aircraft Dynamics in Cruising Flight. J. Guid. Control Dyn. 1986, 9, 446–453. [Google Scholar] [CrossRef]
- Berger, T.; Tischler, M.; Hagerott, S.; Cotting, M.; Gray, W. Identification of a Full-Envelope Learjet-25 Simulation Model Using a Stitching Architecture. J. Guid. Control Dyn. 2020, 43, 2091–2111. [Google Scholar] [CrossRef]
- Heeg, J.; Morelli, E. Evaluation of Simultaneous Multisine Excitation of the Joined Wing SensorCraft Aeroelastic Wind Tunnel Model. In Proceedings of the AIAA Structures, Structural Dynamics, and Materials Conference, Denver, CO, USA, 4–7 April 2011. Number 2011-1959. [Google Scholar] [CrossRef]
- Danowsky, B.; Schmidt, D.; Pfifer, H. Control-Oriented System and Parameter Identification of a Small Flexible Flying-Wing Aircraft. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Grapevine, TX, USA, 9–13 January 2017. Number 2017-1394. [Google Scholar] [CrossRef]
- Grauer, J.; Boucher, M. Identification of Aeroelastic Models for the X-56A Longitudinal Dynamics Using Multisine Inputs and Output Error in the Frequency Domain. Aerospace 2019, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Grauer, J.; Boucher, M. System Identification of Flexible Aircraft: Lessons Learned from the X-56A Phase 1 Flight Tests. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Orlando, FL, USA, 6–10 January 2020. Number 2020-1017. [Google Scholar] [CrossRef]
- Rothhaar, P.; Murphy, P.; Bacon, B.; Gregory, I.; Grauer, J.; Busan, R.; Croom, M. NASA Langley Distributed Propulsion VTOL TiltWing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development. In Proceedings of the AIAA Aviation Technology, Integration, and Operations Conference, Atlanta, GA, USA, 16–20 June 2014. Number 2014-2999. [Google Scholar] [CrossRef] [Green Version]
- Simmons, B.; Murphy, P. Wind Tunnel-Based Aerodynamic Model Identification for a Tilt-Wing, Distributed Electric Propulsion Aircraft. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Virtual Event, 11–21 January 2021. Number 2021-1298. [Google Scholar] [CrossRef]
- Morelli, E. System IDentification Programs for AirCraft (SIDPAC). Available online: http://software.nasa.gov (accessed on 1 August 2021).
- Hodgkinson, J.; LaManna, W.; Heyde, J. Handling Qualities of Aircraft With Stability and Control Augmentation Systems—A Fundamental Approach. Aeronaut. J. 1976, 80, 75–81. [Google Scholar] [CrossRef]
- Anon. Flying Qualities of Pilot Aircraft; Technical Report Mil-Std 1797A; Department of Defense: Washington, DC, USA, 1990. [Google Scholar]
- Berger, T.; Ivler, C.; Berrios, M.; Tischler, M.; Miller, D. Disturbance Rejection Handling Qualities Criteria for Rotorcraft. In Proceedings of the AHS 72nd Annual Forum, West Palm Beach, FL, USA, 17–19 May 2016. Number 78. [Google Scholar]
- Morelli, E. Multiple Input Design for Real-Time Parameter Estimation in the Frequency Domain. IFAC Proc. Vol. 2003, 36, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Morelli, E. Flight-Test Experiment Design for Characterizing Stability and Control of Hypersonic Vehicles. J. Guid. Control Dyn. 2009, 32, 949–959. [Google Scholar] [CrossRef] [Green Version]
- Morelli, E. Flight Test Maneuvers for Efficient Aerodynamic Modeling. J. Aircr. 2012, 49, 1857–1867. [Google Scholar] [CrossRef] [Green Version]
- Morelli, E. Practical Aspects of Multiple-Input Design for Aircraft System Identification Flight Tests. In Proceedings of the AIAA Flight Testing Conference, Virtual Event, 2–6 August 2021. Number 2021-2795. [Google Scholar] [CrossRef]
- Morelli, E. Optimal Input Design for Aircraft Stability and Control Flight Testing. J. Optim. Theory Appl. 2021, 191, 415–439. [Google Scholar] [CrossRef]
- Regan, C.; Kotikalpudi, A.; Schmidt, D.; Seiler, P. mAEWing2: Initial Flight Test and System Identification of a Flexible UAV. In Proceedings of the AIAA Mechanics Conference, Orlando, FL, USA, 6–10 January 2020. Number 2020-1965. [Google Scholar] [CrossRef]
- Martos, B.; Noriega, A. A Method for Real-Time Pilot Modeling and Multisine Tracking Input Design. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, USA, 7–11 January 2019. Number 2019-1318. [Google Scholar] [CrossRef]
- Campbell, R. A Comparative Framework for Maneuverability and Gust Tolerance of Aerial Microsystems. Master’s Thesis, University of Maryland, College Park, MD, USA, 2012. [Google Scholar]
- Cunningham, M.; Hubbard, J. Open-Loop Linear Model Identification of a Multirotor Vehicle with Active Feedback Control. J. Aircr. 2020, 57, 1044. [Google Scholar] [CrossRef]
- Ljung, L. System Identification: Theory for the User, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Pentelon, R.; Schoukens, J. System Identification: A Frequency Domain Approach, 2nd ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- Morelli, E. Practical Input Optimization for Aircraft Parameter Estimation Experiments; Technical Report CR-191462; NASA: Hampton, VA, USA, 1993. [Google Scholar]
- Silva, W. AEROM: NASA’s Unsteady Aerodynamic and Aeroelastic Reduced-Order Modeling Software. Aerospace 2018, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Grauer, J. Aircraft Fault Detection using Real-Time Frequency Response Estimation. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, CA, USA, 4–8 January 2016. Number 2016-0372. [Google Scholar] [CrossRef] [Green Version]
- Morelli, E. Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, San Diego, CA, USA, 4–8 January 2016. Number 2016-2010. [Google Scholar] [CrossRef] [Green Version]
- Grauer, J. Random Noise Generation Using Fourier Series. J. Aircr. 2018, 55, 1753–1759. [Google Scholar] [CrossRef]
- Grauer, J. In-Flight Turbulence Emulation for Fixed-Wing Aircraft using Equivalent Multisine Excitations; Technical Report TM-2021-20210020347; NASA: Hampton, VA, USA, 2021. [Google Scholar]
- Schroeder, M. Synthesis of Low-Peak-Factor Signals and Binary Sequences with Low Autocorrelation. IEEE Trans. Inf. Theory 1970, 16, 85–89. [Google Scholar] [CrossRef]
- Morelli, E. High Accuracy Evaluation of the Finite Fourier Transform Using Sampled Data; Technical Report TM-110340; NASA: Hampton, VA, USA, 1997. [Google Scholar]
- Morelli, E.; Grauer, J. Practical Aspects of Frequency-Domain Approaches for Aircraft System Identification. J. Aircr. 2020, 57, 268–291. [Google Scholar] [CrossRef]
- Grauer, J.; Heeg, J.; Morelli, E. Real-Time Frequency Response Estimation Using Joined-Wing SensorCraft Aeroelastic Wind-Tunnel Data. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, USA, 13–16 August 2012. Number 2012-4641. [Google Scholar] [CrossRef] [Green Version]
- Grauer, J.; Morelli, E. Method for Real-Time Frequency Response and Uncertainty Estimation. J. Guid. Control Dyn. 2014, 37, 336–343. [Google Scholar] [CrossRef]
- Grauer, J. Dynamic Modeling Using Output-Error Parameter Estimation Based on Frequency Responses Estimated with Multisine Inputs; Technical Report TM-2018-220108; NASA: Hampton, VA, USA, 2018. [Google Scholar]
- Grauer, J.; Waite, J.; Stanford, B. Reduced-Order Aerodynamic Modeling Based on CFD Frequency Responses from Multisine Inputs. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Virtual Event, 11–21 January 2021. Number 2021-1423. [Google Scholar] [CrossRef]
- Berger, T.; Tischler, M.; Knapp, M.; Lopez, M. Identification of Multi-Input Systems in the Presence of Highly Correlated Inputs. J. Guid. Control Dyn. 2018, 41, 2247–2257. [Google Scholar] [CrossRef]
- Grauer, J.; Boucher, M. Real-Time Estimation of Bare-Airframe Frequency Responses from Closed-Loop Data and Multisine Inputs. J. Guid. Control Dyn. 2020, 43, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Grauer, J.; Boucher, M. Aircraft System Identification from Multisine Inputs and Frequency Responses. J. Guid. Control Dyn. 2020, 43, 2391–2398. [Google Scholar] [CrossRef]
- Anon. X-59: Quiet Supersonic Flight over Land. Available online: https://www.nasa.gov/specials/X59/ (accessed on 1 December 2021).
Loop/Dynamics | Excitation | Input Description | Output Description |
---|---|---|---|
Bare airframe | Control effector positions, | Sensor measurements, | |
Closed loop | FCS inputs from pilot station, | Sensor measurements, | |
Mixer broken loop | Mixer inputs, | FCS output commands, | |
Sensor broken loop | FCS inputs from feedback, | Sensor measurements, |
Parameter | Value | Unit |
---|---|---|
b | ft | |
ft | ||
S | ft | |
m | slug | |
9438 | slug - ft | |
153,650 | slug - ft | |
160,110 | slug - ft | |
slug - ft | ||
4296 | slug - ft | |
7 | slug - ft | |
841 | in |
Parameter | Value | Unit |
---|---|---|
h | 20,000 | ft |
deg | ||
V | 509 | ft/s |
KEAS | 220 | knots |
M | — | |
54 | deg | |
deg | ||
deg | ||
deg | ||
deg | ||
deg |
Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|---|---|
Excitation | Harmonics | Frequencies, Hz | Amplitude | RPF |
---|---|---|---|---|
to | 1 deg | |||
to | 7.5% | |||
to | 1 deg | |||
to | 1 deg/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grauer, J.A. Frequency Response Estimation for Multiple Aircraft Control Loops Using Orthogonal Phase-Optimized Multisine Inputs. Processes 2022, 10, 619. https://doi.org/10.3390/pr10040619
Grauer JA. Frequency Response Estimation for Multiple Aircraft Control Loops Using Orthogonal Phase-Optimized Multisine Inputs. Processes. 2022; 10(4):619. https://doi.org/10.3390/pr10040619
Chicago/Turabian StyleGrauer, Jared A. 2022. "Frequency Response Estimation for Multiple Aircraft Control Loops Using Orthogonal Phase-Optimized Multisine Inputs" Processes 10, no. 4: 619. https://doi.org/10.3390/pr10040619
APA StyleGrauer, J. A. (2022). Frequency Response Estimation for Multiple Aircraft Control Loops Using Orthogonal Phase-Optimized Multisine Inputs. Processes, 10(4), 619. https://doi.org/10.3390/pr10040619