Optimization of Biofertilizer Formulation for Phosphorus Solubilizing by Pseudomonas fluorescens Ur21 via Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inoculant Preparation
2.2. Sample Preparation and Phosphate Solubilization Modeling
3. Results
+ 337.4X2 2+ 39.4X3 2 − 201.7X1X2 − 22.3X1X3 − 39.6X2X3
R2 = 0.9035
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, N.; Hussain, S.; Ali, M.A.; Minhas, A.; Waheed, W.; Danish, S.; Fahad, S.; Ghafoor, U.; Baig, K.S.; Sultan, H.; et al. Correlation of soil characteristics and citrus leaf nutrients contents in current scenario of Layyah District. Horticulture 2022, 8, 61. [Google Scholar] [CrossRef]
- Gamalero, E.; Bona, E.; Todeschini, V.; Lingua, G. Saline and arid soils: Impact on bacteria, plants, and their interaction. Biology 2020, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Daly, K.; Styles, D.; Lalor, S.; Wall, D.P. Phosphorus sorption, supply potential and availability in soils with contrasting parent material and soil chemical properties. Eur. J. Soil Sci. 2015, 66, 792–801. [Google Scholar] [CrossRef]
- Elser, J.J. Phosphorus: A limiting nutrient for humanity. Curr. Opin. Biotechnol. 2012, 23, 833–838. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaidi, A.; Wani, P.A. Role of phosphate-solubilizing microorganisms in sustainable agriculture: A review. Agron. Sustain. Dev. 2007, 27, 29–43. [Google Scholar] [CrossRef]
- Abd-Alla, M.H. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Lett. Appl. Microbiol. 1994, 18, 294–296. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Norrish, K.; Rosser, H. Mineral Phosphate in Soils: An Australian Viewpoint; Academic Press: Cambridge, MA, USA, 1983; pp. 335–361. Available online: http://hdl.handle.net/102.100.100/285990?index=1 (accessed on 8 January 2022).
- Lindsay, W.L.; Vlek, P.L.G.; Chien, S.H. Phosphate minerals. In Minerals in Soil Environment, 2nd ed.; Dixon, J.B., Weed, S.B., Eds.; Soil Science Society of America: Madison, WI, USA, 1989; pp. 1089–1130. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; Antonio, C.D.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Wackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Schindler, D.W.; Hecky, R.E.; Findlay, D.L.; Stainton, M.P.; Parker, B.R.; Paterson, M.J.; Beaty, K.J.; Lyng, M.; Kasian. S.E.M. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proc. Natl. Acad. Sci. USA 2008, 105, 11254–11258. [Google Scholar] [CrossRef] [Green Version]
- Gyaneshwar, P.; Naresh, K.G.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 2002, 245, 83–93. [Google Scholar] [CrossRef]
- Chandini, T.M.; Dennis, P. Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers. For. Ecol. Manag. 2002, 159, 187–201. [Google Scholar]
- Evans, J.; McDonald, L.; Price, A. Application of reactive phosphate rock and sulphur fertilisers to enhance the availability of soil phosphate in organic farming. Nutr. Cycling Agroecosyst. 2006, 75, 233–246. [Google Scholar] [CrossRef]
- García-Fraile, P.; Menéndez, E.; Rivas, R. Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng. 2015, 2, 183–205. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Shaharoona, B.; Mahmood, T. Plant Growth Promoting Rhizobacteria and sustainable agriculture. In Microbial Strategies for Crop Improvement; Springer: Berlin/Heidelberg, Germany, 2009; pp. 133–160. [Google Scholar] [CrossRef]
- Malusá, E.; Vassiley, N. A contribution to set a legal framework for biofertilisers. Appl. Microbiol. Biotechnol. 2014, 98, 6599–6607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seilsepour, M.; Baniani, E.; Kianirad, M. Effect of phosphate solubilizing microorganism (PSM) in reducing the rate of phosphate fertilizers application to cotton crop. In Proceedings of the 15th International Meeting on Microbial Phosphate Solubilization Salamanca University, Salamanca, Spain, 16–19 July 2002. [Google Scholar]
- Senthil Kumar, C.M.; Jacob, T.K.; Devasahayam, S.; Stephy, T.; Geethu, C. Multifarious plant growth promotion by an entomopathogenic fungus Lecanicillium psalliotae. Microbiol. Res. 2018, 207, 153–160. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Hamza Sarathambala, S.C.; Anke Gowda, S.J.; Ganeshamurthy, A.N.; Gupta, S.B.; Aparna Nair, V.; Subila, K.P.; Lijina, A.V.; Divya, C. Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, soil available Zn and plant Zn content. Geoderma 2018, 321, 173–186. [Google Scholar] [CrossRef]
- Hughes, M.N.; Poole, R.K. Metal speciation and microbial growth—The hard and soft facts. J. Gen. Microbiol. 1991, 137, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Gadd, G.M. Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 1999, 41, 47–92. [Google Scholar] [CrossRef]
- Song, O.R.; Lee, S.J.; Lee, Y.S.; Lee, S.C.; Kim, K.K.; Choi, Y.L. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Br. J. Microbiol. 2008, 39, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Baig, K.S.; Arshad, M.; Zahir, Z.A.; Cheema, M.A. Comparative efficacy of qualitative and quantitative methods for rock phosphate solubilization with phosphate solubilizing rhizobacteria. Soil Environ. 2010, 29, 82–86. Available online: https://www.cabdirect.org/cabdirect/abstract/20113086673 (accessed on 8 January 2022).
- Padmavathi, T. Optimization of phosphate solubilization by Aspergillus niger using Plackett-Burman and response surface methodology. J. Plant. Nutr. Soil Sci. 2015, 15, 781793. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Khalil, S.; Ayub, N.; Rashid, M. In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganism (PSM) from maize rhizosphere. Int. J. Agric. Biol. Eng. 2002, 4, 454–458. [Google Scholar] [CrossRef]
- Fallah, A. Abundance and distribution of phosphate solubilizing bacteria and fungi in some soil samples from north of Iran. In Proceedings of the 18th World Congress of Soil Science, Philadelphia, PA, USA, 9–15 July 2006. [Google Scholar]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [Green Version]
- Whitelaw, M.A. Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv. Agron. 1999, 69, 99–151. [Google Scholar] [CrossRef]
- Khawazi, K.; Asgharzadeh, A.; Rajali, F.; Asadi Rahmani, F.; Besharati, H.; Fallah Nosratabadi, A.S. Instructions on how to investigate bio-fertilizers. In Soil Water Research; SADES Publications: Tehran, Iran, 2013. (In Persian) [Google Scholar]
- Ziaeyan, A. The possibility of biological phosphate fertilizers application in corn cultivation of Fars Province. Soil Use Manag. 2012, 2, 111–125. Available online: https://www.sid.ir/en/journal/ViewPaper.aspx?id=266849 (accessed on 8 January 2022).
- Sarikhani, M.R.; Aliasgharzad, N.; Khoshru, B. Effectiveness study of phosphate solubilizing bacteria in the formulation of phosphatic microbial fertilizers on Corn. Iran J. Soil Water Res. 2018, 49, 71–81, (Abstract in English). [Google Scholar] [CrossRef]
- Sangeeta, M.; Nautiyal. C.S. An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol. 2001, 43, 51–56. [Google Scholar] [CrossRef]
- Swetha, S.; Varma, A.; Padmavathi, T. Statistical evaluation of the medium components for the production of high biomass, α-amylase and protease enzymes by Piriformospora indica using Plackett–Burman experimental design. Biotechnology 2014, 4, 45. [Google Scholar] [CrossRef] [Green Version]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2016; p. 856. ISBN 978-1-118-91601-8. [Google Scholar]
- Khuri, A.I.; Mukhopadhyay, S. Response Surface Methodology. In Wiley Interdisciplinary Reviews: Computational Statistics; Wiley: New York, NY, USA, 2010; Volume 2, pp. 128–149. [Google Scholar] [CrossRef]
- Hashemnejad, F.; Barin, M.; Khezri, M.; Ghoosta, Y.; Hammer, E.C. Isolation and identification of insoluble zinc-solubilising bacteria and evaluation of their ability to solubilise various zinc minerals. J. Plant. Nutr. Soil Sci. 2021, 21, 9. [Google Scholar] [CrossRef]
- Somasegaran, P.; Hoben, H.J. Preparing a range of carrier materials and producing inoculants Handbook for Rhizobia. In Handbook for Rhizobia: Methods in Legume Rhizobium Technology; Somasegaran, P., Hoben, H.J., Eds.; Springer: New York, NY, USA, 1994; pp. 240–248. [Google Scholar]
- Cotteni, A. Methods of plant analysis. In Soil and Plant Testing; Westerman, L.R., Ed.; FAO Soil Bulletin: Food and Agriculture Organization of the United Nations: Rome, Italy, 1980; pp. 64–100. [Google Scholar]
- Ziaeyan, A.; Salim-pour, S.; Silsipour, M.; Safari, H. Evaluation of some bio and chemical P-fertilizers in corn. In Proceedings of the 1st Iranian Fertilizer Challenges Congress Half a Century of the Fertilizer Consumption, Tehran, Iran, 29 February–2 March 2011; Soil and Water Research Institute: Tehran, Iran, 2011. (In Persian). [Google Scholar]
- Ashrafi-Saeidlou, S.; Rasouli-Sadaghiani, M.H.; Asadzadeh, F.; Barin, M. Modeling phosphate solubilization by Pseudomonas fluorescens using response surface methodology. Water Soil Sci. 2017, 26, 299–324. Available online: https://water-soil.tabrizu.ac.ir/article_5905_en.html?lang=fa (accessed on 8 January 2022).
- Shilpa, M.E.; Brahmaprakash, G.P. Amendment of carrier with organic material for enhancing shelf life of microbial consortium. J. Pure Appl. Microbiol. 2016, 10, 2835–2842. [Google Scholar] [CrossRef]
- Sagoe, C.I.; Ando, T.; Kouno, K.; Nagaoka, T. Residual effects of organic acid-treated phosphate rocks on some soil properties and phosphate availability. J. Plant. Nutr. Soil Sci. 1998, 44, 627–634. [Google Scholar] [CrossRef]
- Zapata, F.; Roy, R.N. Use of Phosphate Rocks for Sustainable Agriculture: FAO Fertilizer and Plant Nutrition Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; Volume 13, pp. 1–148. Available online: http://www.fao.org (accessed on 8 January 2022).
- Besharati, H.; Khosravi, H.; Khavazi, K.; Ziaeian, A.; Mirzashahi, K.; Ghaderi, J.; Zabihi, H.R.; Mostashari, M.; Sabah, A.; Rashid, N. Effects of biological oxidation of sulfur on soil properties and nutrient availability in some soils of Iran. J. Soil Rese 2017, 31, 393–404. [Google Scholar] [CrossRef]
- Brahim, S.; Niess, A.; Pflipsen, M.; Neuhoff, D.; Scherer, H. Effect of combined fertilization with rock phosphate and elemental sulphur on yield and nutrient uptake of soybean. Plant Soil Environ. 2017, 63, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.P.; Amberger, A. Solubilization and availability of phosphorus during decomposition of rock phosphate enriched straw and urine. Biol. Agric. Hortic. 1991, 7, 261–269. [Google Scholar] [CrossRef]
- Stanisławska-Glubiak, E.; Korzeniowska, J.; Hoffmann, J.; Górecka, H.; Jóźwiak, W.; Wiśniewska, G. Effect of sulphur added to phosphate rock on solubility and phytoavailability of phosphorus. Pol. J. Chem. Technol. 2014, 16, 81–85. [Google Scholar] [CrossRef]
- Rajan, S.S.S. Effect of sulphur content of phosphate rock/sulphur granules on the availability of phosphate to plants. J. Fertil. Res. 1983, 4, 287–296. [Google Scholar] [CrossRef]
- Attoe, O.J.; Olson, R.A. Factors affecting rate of oxidation in soils of elemental sulfur and that added in rock phosphate-sulfur fusions. Soil Sci. 1966, 101, 25. [Google Scholar] [CrossRef]
Factors | Coded | Levels | ||||
---|---|---|---|---|---|---|
xi | +1.68 | +1 | 0 | −1 | −1.68 | |
Organic matter (g) | x1 | 50 | 40.9 | 27.5 | 14.1 | 5 |
Sulfur (g) | x2 | 30 | 23.9 | 15 | 6.1 | 0 |
Phosphate rock (g) | x3 | 80 | 67.8 | 50 | 32.2 | 20 |
Experiment No. | Encoded Values of Variables | Measured Soluble P Mg/kg | ||
---|---|---|---|---|
Organic Matter | Phosphate Rock | Sulfur | ||
1 | 0.00 | 0.00 | 1.68 | 102.9 |
2 | 1.68 | 0.00 | 0.00 | 794.5 |
3 | 1.00 | −1.00 | −1.00 | 1259.6 |
4 | 1.00 | −1.00 | 1.00 | 839.2 |
5 | −1.00 | −1.00 | −1.00 | 103.6 |
6 | −1.00 | 1.00 | 1.00 | 350.3 |
7 | 0.00 | 0.00 | 0.00 | 295.7 |
8 | 0.00 | 0.00 | 0.00 | 344.6 |
9 | 0.00 | −1.68 | 0.00 | 1046.6 |
10 | 0.00 | 0.00 | −1.68 | 903.2 |
11 | 1.00 | 1.00 | 1.00 | 610.5 |
12 | 0.00 | 0.00 | 0.00 | 571.5 |
13 | 0.00 | 0.00 | 0.00 | 99.7 |
14 | −1.00 | 1.00 | −1.00 | 840.2 |
15 | 1.00 | 1.00 | −1.00 | 888.2 |
16 | 1.00 | −1.00 | 1.00 | 73.5 |
17 | −1.68 | 0.00 | 0.00 | 100.8 |
18 | 0.00 | 0.00 | 0.00 | 187.4 |
19 | 0.00 | 1.68 | 0.00 | 1645.3 |
20 | 0.00 | 0.00 | 0.00 | 227.9 |
Source | Df | Sum of Squares | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 9 | 3,460,020 | 384,447 | 10.41 | 0.001 * | |
Linear | 3 | 1,473,790 | 491,263 | 13.30 | 0.001 * | |
OM | 1 | 844,719 | 844,719 | 22.87 | 0.001 * | |
P-Rock | 1 | 147,697 | 147,697 | 4.00 | 0.073 ns | |
S | 1 | 481,373 | 481,373 | 13.03 | 0.005 * | |
Square | 3 | 1,644,226 | 548,075 | 14.84 | 0.001 * | |
OM × OM | 1 | 5665 | 5665 | 0.15 | 0.704 ns | |
P-Rock × P-Rock | 1 | 1,640,757 | 1,640,757 | 44.42 | 0.000 * | |
S × S | 1 | 22,376 | 22,376 | 0.61 | 0.454 ns | |
2-Way interaction | 3 | 342,004 | 114,001 | 3.09 | 0.077 ns | |
OM × P-Rock | 1 | 325,466 | 325,466 | 8.81 | 0.014 * | |
OM × S | 1 | 3962 | 3962 | 0.11 | 0.75 ns | |
P-Rock × S | 1 | 12,577 | 12,577 | 0.34 | 0.572 ns | |
Error | 10 | 369,403 | 36,940 | |||
Lack-of-fit | 5 | 236,594 | 47,319 | 1.78 | 0.271 ns | |
Pure error | 5 | 132,809 | 26,562 | |||
Total | 19 | 3,829,424 |
Variable | Unit | Optimum Value | Predicted Dissolved P (mg·kg−1) |
---|---|---|---|
OM | g | 50 | 1684.39 |
P-Rock | g | 30 | |
S | g | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barin, M.; Asadzadeh, F.; Hosseini, M.; Hammer, E.C.; Vetukuri, R.R.; Vahedi, R. Optimization of Biofertilizer Formulation for Phosphorus Solubilizing by Pseudomonas fluorescens Ur21 via Response Surface Methodology. Processes 2022, 10, 650. https://doi.org/10.3390/pr10040650
Barin M, Asadzadeh F, Hosseini M, Hammer EC, Vetukuri RR, Vahedi R. Optimization of Biofertilizer Formulation for Phosphorus Solubilizing by Pseudomonas fluorescens Ur21 via Response Surface Methodology. Processes. 2022; 10(4):650. https://doi.org/10.3390/pr10040650
Chicago/Turabian StyleBarin, Mohsen, Farrokh Asadzadeh, Masoumeh Hosseini, Edith C. Hammer, Ramesh Raju Vetukuri, and Roghayeh Vahedi. 2022. "Optimization of Biofertilizer Formulation for Phosphorus Solubilizing by Pseudomonas fluorescens Ur21 via Response Surface Methodology" Processes 10, no. 4: 650. https://doi.org/10.3390/pr10040650
APA StyleBarin, M., Asadzadeh, F., Hosseini, M., Hammer, E. C., Vetukuri, R. R., & Vahedi, R. (2022). Optimization of Biofertilizer Formulation for Phosphorus Solubilizing by Pseudomonas fluorescens Ur21 via Response Surface Methodology. Processes, 10(4), 650. https://doi.org/10.3390/pr10040650