A Review of the Application of Resorcinarenes and SBA-15 in Drug Delivery
Abstract
:1. Introduction
2. Synthesis of calix[4]resorcinarenes and Porous Materials (SBA15)
2.1. Synthesis of calix[4]resorcinarenes
2.2. Synthesis of SBA-15
3. Resorcinarenes and their Applications in Drug Delivery
4. Inclusion Complexes Based on SBA-15 and Their Applications in Drug Delivery
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grossen, P.; Witzigmann, D.; Sieber, S.; Huwyler, J. PEG-PCL-based nanomedicines: A biodegradable drug delivery system and its application. J. Control. Release 2017, 260, 46–60. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, J.; Wang, Y.; Gao, H.; Wei, G.; Huang, Y.; Yu, H.; Gan, Y.; Wang, Y.; Mei, L. Recent progress in drug delivery. Acta Pharm. Sin. B 2019, 9, 1145–1162. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Yang, F.; Xiong, F.; Gu, N. The Smart Drug Delivery System and Its Clinical Potential. Theranostics 2016, 6, 1306–1323. [Google Scholar] [CrossRef] [PubMed]
- Pons-Faudoa, F.P.; Ballerini, A.; Sakamoto, J.; Grattoni, A. Advanced implantable drug delivery technologies: Transforming the clinical landscape of therapeutics for chronic diseases. Biomed. Microdevices 2019, 21, 47. [Google Scholar] [CrossRef]
- Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 2017, 12, 7291–7309. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019, 4, 33. [Google Scholar] [CrossRef] [Green Version]
- Ezrahi, S.; Aserin, A.; Garti, N. Basic principles of drug delivery systems—The case of paclitaxel. Adv. Colloid Interface Sci. 2019, 263, 95–130. [Google Scholar] [CrossRef]
- Bharate, S.S.; Bharate, S.B.; Bajaj, A.N. Interactions and Incompatibilities of Pharmaceutical Excipients with Active Pharmaceutical Ingredients: A Comprehensive Review. J. Excip. Food Chem. 2010, 1, 3–26. [Google Scholar]
- Selin, M.; Peltonen, L.; Hirvonen, J.; Bimbo, L.M. Dendrimers and their supramolecular nanostructures for biomedical applications. J. Drug Deliv. Sci. Technol. 2016, 34, 10–20. [Google Scholar] [CrossRef]
- Mejia-Ariza, R.; Graña-Suárez, L.; Verboom, W.; Huskens, J. Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J. Mater. Chem. B 2017, 5, 36–52. [Google Scholar] [CrossRef]
- Gholamali, I.; Yadollahi, M. Bio-nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: A Review. Regen. Eng. Transl. Med. 2021, 7, 129–146. [Google Scholar] [CrossRef]
- Yu, H.; Park, J.-Y.; Kwon, C.W.; Hong, S.-C.; Park, K.-M.; Chang, P.-S. An Overview of Nanotechnology in Food Science: Preparative Methods, Practical Applications, and Safety. J. Chem. 2018, 2018, 5427978. [Google Scholar] [CrossRef]
- Chabria, Y.; Duffy, G.P.; Lowery, A.J.; Dwyer, R.M. Hydrogels: 3D Drug Delivery Systems for Nanoparticles and Extracellular Vesicles. Biomedicines 2021, 9, 1694. [Google Scholar] [CrossRef] [PubMed]
- Kashapov, R.; Razuvayeva, Y.; Ziganshina, A.; Sergeeva, T.; Kashapova, N.; Sapunova, A.; Voloshina, A.; Nizameev, I.; Salnikov, V.; Zakharova, L. Supramolecular assembly of calix[4]resorcinarenes and chitosan for the design of drug nanocontainers with selective effects on diseased cells. New J. Chem. 2020, 44, 17854–17863. [Google Scholar] [CrossRef]
- Kharlamov, S.V.; Kashapov, R.R.; Pashirova, T.N.; Zhiltsova, E.P.; Lukashenko, S.S.; Ziganshina, A.Y.; Gubaidullin, A.T.; Zakharova, L.Y.; Gruner, M.; Habicher, W.D.; et al. A Supramolecular Amphiphile Based on Calix[4]resorcinarene and Cationic Surfactant for Controlled Self-Assembly. J. Phys. Chem. C 2013, 117, 20280–20288. [Google Scholar] [CrossRef]
- Bahrami, Z.; Badiei, A.; Atyabi, F. Surface functionalization of SBA-15 nanorods for anticancer drug delivery. Chem. Eng. Res. Des. 2014, 92, 1296–1303. [Google Scholar] [CrossRef]
- Jangra, S.; Girotra, P.; Chhokar, V.; Tomer, V.K.; Sharma, A.K.; Duhan, S. In-vitro drug release kinetics studies of mesoporous SBA-15-azathioprine composite. J. Porous Mater. 2016, 23, 679–688. [Google Scholar] [CrossRef]
- Morales, V.; Martín, A.; Ortiz-Bustos, J.; Sanz, R.; García-Muñoz, R.A. Effect of the dual incorporation of fullerene and polyethyleneimine moieties into SBA-15 materials as platforms for drug delivery. J. Mater. Sci. 2019, 54, 11635–11653. [Google Scholar] [CrossRef]
- Hashida, M. Role of pharmacokinetic consideration for the development of drug delivery systems: A historical overview. Adv. Drug Deliv. Rev. 2020, 157, 71–82. [Google Scholar] [CrossRef]
- Felice, B.; Prabhakaran, M.P.; Rodríguez, A.P.; Ramakrishna, S. Drug delivery vehicles on a nano-engineering perspective. Mater. Sci. Eng. C 2014, 41, 178–195. [Google Scholar] [CrossRef]
- Hoskins, C.; Curtis, A.D.M. Simple Calix[n]arenes and Calix[4]resorcinarenes as Drug Solubilizing Agents. J. Nanomed. Res. 2015, 2, 28. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Yang, Y.-W. Controlled drug delivery systems based on calixarenes. Chin. Chem. Lett. 2015, 26, 825–828. [Google Scholar] [CrossRef]
- D’Acquarica, I.; Ghirga, F.; Ingallina, C.; Quaglio, D.; Zappia, G.; Uccello-Barretta, G.; Balzano, F.; Botta, B. Resorc[4]arenes as Preorganized Synthons for Surface Recognition and Host-Guest Chemistry. In Calixarenes and Beyond; Neri, P., Sessler, J.L., Wang, M.-X., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 175–193. [Google Scholar]
- Darvish, F.; Khazraee, S. Molecular iodine: An efficient and environment-friendly catalyst for the synthesis of calix[4]resorcinarenes. Comptes Rendus Chim. 2014, 17, 890–893. [Google Scholar] [CrossRef]
- Yu, G.; Jie, K.; Huang, F. Supramolecular Amphiphiles Based on Host–Guest Molecular Recognition Motifs. Chem. Rev. 2015, 115, 7240–7303. [Google Scholar] [CrossRef] [PubMed]
- Shalaeva, Y.V.; Morozova, J.E.; Ermakova, A.; Nizameev, I.; Kadirov, M.; Kazakova, E.; Konovalov, A. One-step synthesis of gold colloids using amidoaminocalix[4]resorcinarenes as reducing and stabilizing agents. Investigation of naproxen binding. Colloids Surf. A Physicochem. Eng. Asp. 2017, 527, 1–10. [Google Scholar] [CrossRef]
- Kashapov, R.R.; Razuvayeva, Y.S.; Ziganshina, A.Y.; Mukhitova, R.K.; Sapunova, A.S.; Voloshina, A.D.; Nizameev, I.R.; Kadirov, M.K.; Zakharova, L.Y. Design of N-Methyl-d-Glucamine-Based Resorcin[4]arene Nanoparticles for Enhanced Apoptosis Effects. Mol. Pharm. 2020, 17, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Sharma, S. An overview of ordered mesoporous material SBA-15: Synthesis, functionalization and application in oxidation reactions. J. Porous Mater. 2017, 24, 741–749. [Google Scholar] [CrossRef]
- Fonseca-Correa, R.A. Microporous and Mesoporous Materials in Decontamination of Water Process; Murillo-Acevedo, Y.S., Ed.; IntechOpen: Rijeka, Croatia, 2016; Chapter 7. [Google Scholar]
- Björk, E.M. Synthesizing and Characterizing Mesoporous Silica SBA-15: A Hands-On Laboratory Experiment for Undergraduates Using Various Instrumental Techniques. J. Chem. Educ. 2017, 94, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Jain, V.K.; Kanaiya, P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 2011, 80, 75–102. [Google Scholar] [CrossRef]
- Galan, A.; Ballester, P. Stabilization of reactive species by supramolecular encapsulation. Chem. Soc. Rev. 2016, 45, 1720–1737. [Google Scholar] [CrossRef]
- Ali, I.; Saifullah, S.; Imran, M.; Nisar, J.; Javed, I.; Shah, M.R. Synthesis and biocompatibility of self-assembling multi-tailed resorcinarene-based supramolecular amphiphile. Colloid Polym. Sci. 2020, 298, 331–339. [Google Scholar] [CrossRef]
- Morozova, J.E.; Syakaev, V.V.; Ermakova, A.M.; Shalaeva, Y.V.; Kazakova, E.K.; Konovalov, A.I. Supramolecular systems based on amidoammonium and amidoaminocalix[4]resorcinarenes and polyacrylic acid. Colloids Surf. A Physicochem. Eng. Asp. 2015, 481, 400–406. [Google Scholar] [CrossRef]
- Maldonado, M.; Sanabria, E.; Batanero, B.; Esteso, M.A. Apparent molal volume and viscosity values for a new synthesized diazoted resorcin[4]arene in DMSO at several temperatures. J. Mol. Liq. 2017, 231, 142–148. [Google Scholar] [CrossRef]
- Galindres, D.M.; Ribeiro, A.C.F.; Valente, A.J.M.; Esteso, M.A.; Sanabria, E.; Vargas, E.F.; Verissimo, L.M.P.; Leaist, D.G. Ionic conductivities and diffusion coefficients of alkyl substituted sulfonated resorcinarenes in aqueous solutions. J. Chem. Thermodyn. 2019, 133, 223–228. [Google Scholar] [CrossRef]
- Esteso, M.A.; Ribeiro, A.C.F.; Haghi, A.K. Chemistry and Chemical Engineering for Sustainable Development: Best Practices and Research Directions; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Das, S.; Das, M.K. Surface Modification of Resorcinarene-Based Self-Assembled Solid Lipid Nanoparticles for Drug Targeting. In Surface Modification of Nanoparticles for Targeted Drug Delivery; Pathak, Y.V., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 311–329. [Google Scholar]
- Ma, X.; Zhao, Y. Biomedical Applications of Supramolecular Systems Based on Host–Guest Interactions. Chem. Rev. 2015, 115, 7794–7839. [Google Scholar] [CrossRef]
- Kashapov, R.R.; Razuvayeva, Y.S.; Ziganshina, A.Y.; Mukhitova, R.K.; Sapunova, A.S.; Voloshina, A.D.; Syakaev, V.V.; Latypov, S.K.; Nizameev, I.R.; Kadirov, M.K.; et al. N-Methyl-d-glucamine–Calix[4]resorcinarene Conjugates: Self-Assembly and Biological Properties. Molecules 2019, 24, 1939. [Google Scholar] [CrossRef] [Green Version]
- Menon, S.K.; Modi, N.R.; Mistry, B.; Joshi, K. Improvement of some pharmaceutical properties of mycophenolate mofetil (MMF) by para sulphonatocalix[4]resorcinarene inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 2011, 70, 121–128. [Google Scholar] [CrossRef]
- Dawn, A.; Yao, X.; Yu, Y.; Jiang, J.; Kumari, H. Assessment of the in vitro toxicity of calixarenes and a metal-seamed calixarene: A chemical pathway for clinical application. Supramol. Chem. 2019, 31, 425–431. [Google Scholar] [CrossRef]
- Javor, S.; Rebek, J. Activation of a Water-Soluble Resorcinarene Cavitand at the Water–Phosphocholine Micelle Interface. J. Am. Chem. Soc. 2011, 133, 17473–17478. [Google Scholar] [CrossRef]
- Salla, R.F.; de David, J.; Schneider, L.; Tschiedel, B.; Teló, G.H.; Schaan, B.D. Predictors of traffic events due to hypoglycemia in adults with type 1 diabetes: A Brazilian prospective cohort study. Diabetes Res. Clin. Pract. 2021, 178, 108954. [Google Scholar] [CrossRef]
- Caturano, A.; Galiero, R.; Pafundi, P.C.; Cesaro, A.; Vetrano, E.; Palmiero, G.; Rinaldi, L.; Salvatore, T.; Marfella, R.; Sardu, C.; et al. Does a strict glycemic control during acute coronary syndrome play a cardioprotective effect? Pathophysiology and clinical evidence. Diabetes Res. Clin. Pract. 2021, 178, 108959. [Google Scholar] [CrossRef] [PubMed]
- Mendes, C.P.; Postal, B.G.; Frederico, M.J.S.; Elias, R.G.M.; Pinto, V.A.D.M.; Ramos, C.D.F.; Neuenfeldt, P.D.; Nunes, R.J.; Silva, F.R.M.B. Synthesis of a novel glibenclamide-pioglitazone hybrid compound and its effects on glucose homeostasis in normal and insulin-resistant rats. Bioorg. Chem. 2021, 114, 105157. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhang, L.; Zhou, C.; Mo, J.; Shen, S.; Zhang, T.; Li, J.; Lin, L.; Wu, R.; Gan, L. Alkyl-benzofuran dimers from Eupatorium chinense with insulin-sensitizing and anti-inflammatory activities. Bioorg. Chem. 2021, 113, 105030. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Tian, C.; Gandra, I.; Eslava, V.; Galindres, D.; Vargas, E.F.; Leblanc, R. The Investigation on Resorcinarenes towards either Inhibiting or Promoting Insulin Fibrillation. Chem.-Eur. J. 2017, 23, 17903–17907. [Google Scholar] [CrossRef]
- Sergeeva, T.Y.; Mukhitova, R.K.; Nizameev, I.R.; Kadirov, M.K.; Sapunova, A.S.; Voloshina, A.D.; Mukhametzyanov, T.A.; Ziganshina, A.Y.; Antipin, I.S. A Glucose-Responsive Polymer Nanocarrier Based on Sulfonated Resorcinarene for Controlled Insulin Delivery. ChemPlusChem 2019, 84, 1560–1566. [Google Scholar] [CrossRef]
- Hussain, H.; Du, Y.; Tikhonova, E.; Mortensen, J.S.; Ribeiro, O.; Santillan, C.; Das, M.; Ehsan, M.; Loland, C.J.; Guan, L.; et al. Resorcinarene-Based Facial Glycosides: Implication of Detergent Flexibility on Membrane-Protein Stability. Chemistry 2017, 23, 6724–6729. [Google Scholar] [CrossRef]
- Shinde, M.N.; Barooah, N.; Bhasikuttan, A.C.; Mohanty, J. Inhibition and disintegration of insulin amyloid fibrils: A facile supramolecular strategy with p-sulfonatocalixarenes. Chem. Commun. 2016, 52, 2992–2995. [Google Scholar] [CrossRef]
- Porat, Y.; Abramowitz, A.; Gazit, E. Inhibition of Amyloid Fibril Formation by Polyphenols: Structural Similarity and Aromatic Interactions as a Common Inhibition Mechanism. Chem. Biol. Drug Des. 2006, 67, 27–37. [Google Scholar] [CrossRef]
- Han, X.; Park, J.; Wu, W.; Malagon, A.; Wang, L.; Vargas, E.; Wikramanayake, A.; Houk, K.N.; Leblanc, R.M. A resorcinarene for inhibition of Aβ fibrillation. Chem. Sci. 2017, 8, 2003–2009. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.-M.; Yu, C.-J.; Kim, J.-S.; Kim, S.-U. Ab initio design of drug carriers for zoledronate guest molecule using phosphonated and sulfonated calix[4]arene and calix[4]resorcinarene host molecules. J. Mater. Sci. 2018, 53, 5125–5139. [Google Scholar] [CrossRef] [Green Version]
- Shumatbaeva, A.M.; Morozova, J.E.; Syakaev, V.V.; Shalaeva, Y.V.; Sapunova, A.S.; Voloshina, A.D.; Gubaidullina, A.T.; Bazanova, O.B.; Babaev, V.M.; Nizameev, I.R.; et al. The pH-responsive calix[4]resorcinarene-mPEG conjugates bearing acylhydrazone bonds: Synthesis and study of the potential as supramolecular drug delivery systems. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124453. [Google Scholar] [CrossRef]
- Sergeeva, T.Y.; Mukhitova, R.K.; Bakhtiozina, L.R.; Nizameev, I.R.; Kadirov, M.K.; Sapunova, A.S.; Voloshina, A.D.; Ziganshina, A.Y.; Antipin, I.S. Doxorubicin delivery by polymer nanocarrier based on N-methylglucamine resorcinarene. Supramol. Chem. 2020, 32, 150–161. [Google Scholar] [CrossRef]
- Mendoza-Cardozo, S.; Pedro-Hernández, L.D.; Organista-Mateos, U.; Allende-Alarcón, L.I.; Martinez-Klimova, E.; Ramírez-Ápan, T.; Martínez-García, M. In vitro activity of resorcinarene–chlorambucil conjugates for therapy in human chronic myelogenous leukemia cells. Drug Dev. Ind. Pharm. 2019, 45, 683–688. [Google Scholar] [CrossRef] [PubMed]
- Raval, J.; Trivedi, R.; Prajapati, P. Preparation, Characterization, and In-Vitro Assessment of Calixarene Nanovesicles: A Supramolecular Based Nano-Carrier for Paclitaxel Drug Delivery. Pharm. Chem. J. 2021, 55, 570–579. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Y.; Zhu, W.; Shen, Z. Resorcinarene-centered amphiphilic star-block copolymers: Synthesis, micellization and controlled drug release. Chin. J. Polym. Sci. 2014, 32, 1431–1441. [Google Scholar] [CrossRef]
- Rehman, K.; Ali, I.; El-Haj, B.M.; Kanwal, T.; Maharjan, R.; Saifullah, S.; Imran, M.; Simjee, S.U.; Shah, M.R. Synthesis of novel biocompatible resorcinarene based nanosized dendrimer-vesicles for enhanced anti-bacterial potential of quercetin. J. Mol. Liq. 2021, 341, 116921. [Google Scholar] [CrossRef]
- Pedro-Hernández, L.D.; Martínez-Klimova, E.; Cortez-Maya, S.; Mendoza-Cardozo, S.; Ramírez-Ápan, T.; Martínez-García, M. Synthesis, Characterization, and Nanomedical Applications of Conjugates between Resorcinarene-Dendrimers and Ibuprofen. Nanomaterials 2017, 7, 163. [Google Scholar] [CrossRef] [Green Version]
- Shumatbaeva, A.M.; Morozova, J.E.; Shalaeva, Y.V.; Gubaidullin, A.T.; Saifina, A.F.; Syakaev, V.V.; Bazanova, O.B.; Sapunova, A.S.; Voloshina, A.D.; Nizameev, I.R.; et al. The novel calix[4]resorcinarene-PEG conjugate: Synthesis, self-association and encapsulation properties. Colloids Surf. A Physicochem. Eng. Asp. 2019, 570, 182–190. [Google Scholar] [CrossRef]
- Seljak, K.B.; Kocbek, P.; Gašperlin, M. Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques. J. Drug Deliv. Sci. Technol. 2020, 59, 101906. [Google Scholar] [CrossRef]
- Ahmadi, E.; Dehghannejad, N.; Hashemikia, S.; Ghasemnejad, M.; Tabebordbar, H. Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. Drug Deliv. 2014, 21, 164–172. [Google Scholar] [CrossRef]
- Albayati, T.M.; Salih, I.K.; Alazzawi, H.F. Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system. Heliyon 2019, 5, e02539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krajnović, T.; Maksimović-Ivanić, D.; Mijatović, S.; Drača, D.; Wolf, K.; Edeler, D.; Wessjohann, L.A.; Kaluđerović, G.N. Drug Delivery System for Emodin Based on Mesoporous Silica SBA-15. 2018, 8, 322. Nanomaterials 2018, 8, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malfait, B.; Correia, N.T.; Ciotonea, C.; Dhainaut, J.; Dacquin, J.-P.; Royer, S.; Tabary, N.; Guinet, Y.; Hédoux, A. Manipulating the physical states of confined ibuprofen in SBA-15 based drug delivery systems obtained by solid-state loading: Impact of the loading degree. J. Chem. Phys. 2020, 153, 154506. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Zhao, L.; Zhang, L.; Li, Z.; Luan, Y. Folate-conjugated hybrid SBA-15 particles for targeted anticancer drug delivery. J. Colloid Interface Sci. 2013, 395, 31–39. [Google Scholar] [CrossRef]
- Sevimli, F.; Yılmaz, A. Surface functionalization of SBA-15 particles for amoxicillin delivery. Microporous Mesoporous Mater. 2012, 158, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Hudson, S.P.; Padera, R.F.; Langer, R.; Kohane, D.S. The biocompatibility of mesoporous silicates. Biomaterials 2008, 29, 4045–4055. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Chen, Z.; Paul, P.K.; Lu, Y.; Wu, W.; Qi, J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 2021, 11, 2416–2448. [Google Scholar] [CrossRef]
Active Principle/ Disorder | Carrier | Functional Group * | Topic. | Author/Year |
---|---|---|---|---|
Hyperglycemia Insulin | Resorcinarene | Sulfonyl Diazonium | Thermodynamics Solubilities in water Insulin fibrillation Nanotransporters Nanocapsules. | Galindres Jimenez et al., 2019. Han, Tian, et al., 2017. Maldonado et al., 2017. Ziganshina et al., 2019. |
Antibiotic Doxorubicin Clarithromycin Chloramphenicol Amoxicillin | Resorcinarene | Guanidine Acylhidrazone N-methyl-glucamine Ethylene glycol N-alkyl, N-Aryl | Micelles Nanotransporters | Albayati et al., 2019. Ali et al., 2020. Pang et al., 2013 Sergeeva et al., 2020. Sevimli & Yılmaz, 2012. Shumatbaeva et al., 2019–2020. |
SBA-15 | Amine Polyethyleneimine | Adsorption/Desorption | ||
Anti-inflammatory IndomethacinI buprofen Naproxen | Resorcinarene | PEG N-alkyl, N-aryl Ethylene glycol | Micelles Nanocarriers Dendrimers | Gao et al., 2014. Ahmadi et al., 2014. Pedro-Hernández et al., 2017. Shumatbaeva et al., 2019. Malfait et al., 2020. |
SBA-15 | Amine | Adsorption/Desorption | ||
Anticancer Chlorambucil Gemcitabine | Resorcinarene | Polyamidoamine | Dendrimers | Mendoza-Cardozo et al., 2019. Raval et al., 2021. Sevimli & Yılmaz, 2012. |
SBA-15 | Amine | Adsorption/Desorption |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galindres, D.M.; Cifuentes, D.; Tinoco, L.E.; Murillo-Acevedo, Y.; Rodrigo, M.M.; Ribeiro, A.C.F.; Esteso, M.A. A Review of the Application of Resorcinarenes and SBA-15 in Drug Delivery. Processes 2022, 10, 684. https://doi.org/10.3390/pr10040684
Galindres DM, Cifuentes D, Tinoco LE, Murillo-Acevedo Y, Rodrigo MM, Ribeiro ACF, Esteso MA. A Review of the Application of Resorcinarenes and SBA-15 in Drug Delivery. Processes. 2022; 10(4):684. https://doi.org/10.3390/pr10040684
Chicago/Turabian StyleGalindres, Diana M., Diego Cifuentes, Luz Elena Tinoco, Yesid Murillo-Acevedo, M. Melia Rodrigo, Ana C. F. Ribeiro, and Miguel A. Esteso. 2022. "A Review of the Application of Resorcinarenes and SBA-15 in Drug Delivery" Processes 10, no. 4: 684. https://doi.org/10.3390/pr10040684
APA StyleGalindres, D. M., Cifuentes, D., Tinoco, L. E., Murillo-Acevedo, Y., Rodrigo, M. M., Ribeiro, A. C. F., & Esteso, M. A. (2022). A Review of the Application of Resorcinarenes and SBA-15 in Drug Delivery. Processes, 10(4), 684. https://doi.org/10.3390/pr10040684