Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Route
2.3. Characterization Techniques
3. Results
3.1. XRD Analysis
3.2. TG/DTG Analyses
3.3. FTIR Analysis
3.4. Morphological Properties
3.5. Surface Properties
3.6. Magnetic Properties
4. Discussion
4.1. Formation of Pure CuO/Cu2O/Cu4O3 Nano Composite
4.2. Formation of Pinning Materials within the Synthesized Doped Systems
4.3. Magnetization of Pure CuO/Cu2O/Cu4O3 Nano Composite
4.4. Magnetization of Doped Systems Studied
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naatz, H.; Lin, S.; Li, R.; Jiang, W.; Ji, Z.; Chang, C.H.; Köser, J.; Thöming, J.; Xia, T.; Nel, A.E.; et al. Safe-by-Design CuO Nanoparticles via Fe-Doping, Cu-O Bond Length Variation, and Biological Assessment in Cells and Zebrafish Embryos. ACS Nano 2017, 24, 501–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinmetz, K.H.; Vogl, G.; Petry, W.; Schroeder, K. Diffusion of iron in copper studied by Mössbauer spectroscopy on single crystals. Phys. Rev. B Condens. Matter. 1986, 34, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Kellogg, W.; Xu, H.; Liu, X.; Cho, J.; Wu, G. Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media. Chem. Asian J. 2016, 11, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.F.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Kong, L.T.; Liu, J.H. Metal oxide nanostructures and their gas sensing properties: A review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Marks, T.J.; Facchetti, A. Metal oxides for optoelectronic applications. Nat. Mater. 2016, 15, 383–396. [Google Scholar] [CrossRef]
- Ellis, B.L.; Knauth, P.; Djenizian, T. Three-dimensional self-supported metal oxides for advanced energy storage. Adv. Mater. 2014, 26, 3368–3397. [Google Scholar] [CrossRef]
- Manasrah, A.D.; Almanassra, I.W.; Marei, N.N.; Al-Mubaiyedh, U.A.; Laoui, T.; Atieh, M.A. Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Adv. 2018, 8, 1791–1802. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.; Rohilla, D.; Umar, A.; KaurNand, S.A. Synthesis and characterizations of luminescent copper oxide nanoparticles: Toxicological profiling and sensing applications. Ceram. Int. 2019, 45, 15025–15035. [Google Scholar] [CrossRef]
- Hassan, S.E.D.; Fouda, A.; Radwan, A.A.; Salem, S.S.; Barghoth, M.G.; Awad, M.A.; Abdo, A.M.; El-Gama, M.S. Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. J. Biol. Inorg. Chem. 2019, 24, 377–393. [Google Scholar] [CrossRef]
- Kanwar, R.; Bhar, R.; Mehta, S.K. Designed meso-macroporous silica framework impregnated with copper oxide nanoparticles for enhanced catalytic performance. Chem. Cat Chem. 2018, 10, 2087–2095. [Google Scholar] [CrossRef]
- Mishra, A.K.; Nayak, A.K.; Das, A.K.; Pradhan, D. Microwave-assisted solvothermal synthesis of cupric oxide nanostructures for high-performance supercapacitor. J. Phys. Chem. C 2018, 122, 11249–11261. [Google Scholar] [CrossRef]
- Nwanya, A.C.; Ndipingwi, M.M.; Mayedwa, N.; Razanamahandry, L.C.; Lkpo, C.O.; Waryo, T.; Ntwampe, S.K.O.; Malenga, E.; Fosso-Kankeu, E.; Ezema, F.I.; et al. Maize (Zea mays L.) fresh husk mediated biosynthesis of copper oxides: Potentials for pseudo capacitive energy storage. Electrochim. Acta 2019, 301, 436–448. [Google Scholar] [CrossRef]
- Raj Preeth, D.; Shairam, M.; Suganya, N.; Hootan, R.; Kartik, R.; Pierre, K.; Suvro, C.; Rajalakshmi, S. Green synthesis of copper oxide nanoparticles using sinapic acid: An underpinning step towards antiangiogenic therapy for breast cancer. J. Biol. Inorg. Chem. 2019, 24, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Vorobjovaa, A.I.; Shimanovicha, D.L.; Sychevab, O.A.; Ezovitovab, T.I.; Tishkevichc, D.I.; Trykhanovc, A.V. Studying the Thermodynamic Properties of Composite Magnetic Material Based on Anodic Alumina. Russ. Microelectron. 2019, 48, 107–118. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Vinnik, D.A. Formation and Corrosion Behavior of Nickel/Alumina Nanocomposites. Solid State Phenom. 2020, 299, 100–106. [Google Scholar] [CrossRef]
- Tishkevich, D.I.; Vorobjova, A.I.; Vinnik, D.A. Template Assisted Ni Nanowires Fabrication. Mater. Sci. Forum. 2019, 946, 235–241. [Google Scholar] [CrossRef]
- Oliveira, A.A.; Marlon, I.; Cuadros, V.; Tupan, F.S.; Ivashita, F.F.; Paesano, A., Jr. Size-effect on the optical behavior of Fe-doped CuO nanoparticles synthesized by a freeze-drying process. Mater. Lett. 2018, 229, 327–330. [Google Scholar] [CrossRef]
- Chafi, F.Z.; Bahmad, L.; Hassanain, N.; Fares, B.; Laanab, L.; Mzerd, A. Characterization techniques of Fe-doped CuO thin films deposited by the Spray Pyrolysis method. arXiv 2018, arXiv:1807.09697. [Google Scholar]
- Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 2000, 287, 1019. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Zhao, F.; Pan, Q.; Zhang, Y.P.; Fan, C.F.; Zhang, Y.; Xiao, J.Q. Metal-insulator transition in ferromagnetic Mn-doped CuO thin films. J. Appl. Phys. 2007, 101, 09H111. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Pan, Q.; Gu, Y.S.; Zhao, F.; Qiu, H.M.; Yin, J.H.; Zhu, H.; Xiao, J.Q. Structural and room-temperature ferromagnetic properties of Fe-doped CuO nanocrystals. J. Appl. Phys. 2009, 105, 086103. [Google Scholar] [CrossRef]
- Zheng, X.G.; Kodama, Y.; Saito, K.; Tanaka, E.; Tomokiyo, Y.; Yamada, H.; Xu, C.N. Fast suppression of antiferromagnetism in Cu1−xLixO. Phys. Rev. B 2004, 69, 094510. [Google Scholar] [CrossRef]
- Meneses, C.T.; Duque, J.G.S.; Vivas, L.G.; Knobel, M. Synthesis and characterization of TM-doped CuO (TM= Fe, Ni). J. Non-Cryst. Solids 2008, 354, 4830–4832. [Google Scholar] [CrossRef]
- Filippetti, A.; Fiorentini, V. Double-exchange driven ferromagnetic metal-paramagnetic insulator transition in Mn-doped CuO. Phys. Rev. B 2006, 74, 220401. [Google Scholar] [CrossRef]
- Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; Von Molnar, S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. Spintronics: A Spin-Based Electronics Vision for the Future. Science 2001, 294, 1488–1495. [Google Scholar] [CrossRef] [Green Version]
- Manna, S.; De, S.K. Room temperature ferromagnetism in Fe doped CuO nanorods. J. Magn. Magn. 2010, 322, 2749–2753. [Google Scholar] [CrossRef]
- Yin, S.Y.; Yuana, S.L.; Tian, Z.M.; Liu, L.; Wang, C.H.; Zheng, X.F.; Duan, H.N.; Huo, S.X. Effect of particle size on the exchange bias of Fe-doped CuO nanoparticles. J. Appl. Phys. 2010, 107, 043909-4. [Google Scholar] [CrossRef]
- Liu, K.L.; Yuan, S.L.; Duan, H.N.; Yin, S.Y.; Tian, Z.M.; Zheng, X.F.; Huo, S.X.; Wang, C.H. A comparative study on the magnetic properties of Fe-doped CuO nanopowders prepared by sol–gel and co-precipitation method. Mater Lett 2010, 64, 192–194. [Google Scholar] [CrossRef]
- Basith, N.M.; Vijaya, J.J.; Kennedy, L.J.; Bououdina, M. Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Phys. E 2013, 53, 193–199. [Google Scholar] [CrossRef]
- Joseph, D.P.; Venkateswaran, C.; Vennila, R.S. Critical Analysis on the Structural and Magnetic Properties of Bulk and Nanocrystalline Cu-Fe-O. Adv. Mater. Sci. Eng. 2010, 14, 715872. [Google Scholar]
- Pęczkowski, P.; Zachariasz, P.; Kowalik, M.; Tokarz, W.; Naik, S.P.K.; Żukrowski, J.; Jastrzębski, C.; Dadiel, L.J.; Tabiś, W.; Gondek, L. Iron diffusivity into superconducting YBa2Cu3O7−δ at oxygen-assisted sintering: Structural, magnetic, and transport properties. J. Eur. Ceram. Soc. 2021, 41, 7085–7097. [Google Scholar] [CrossRef]
- Pęczkowski, P.; Zachariasz, P.; Kowalik, M.; Zalecki, R.; Jastrzębski, C. Characterization of the superconductor-multiferroic type materials based on YBa2Cu3O7-δ–YMnO3 composites. Ceram. Int. 2019, 45, 18189–18204. [Google Scholar] [CrossRef]
- Gondek, L.; Dubiel, S.M. Water triggered structural transitions in Fe-gluconate. Inorg. Chim. Acta 2021, 528, 120607. [Google Scholar] [CrossRef]
- Al-Saeedi, S.I.; Al-Senani, G.M.; Abd-Elkader, O.H.; Deraz, N.M. One Pot Synthesis, Surface and Magnetic Properties of Cu2O/Cu and Cu2O/CuO Nanocomposites. Crystals 2021, 11, 487. [Google Scholar] [CrossRef]
- Salavati, N.; Khansari, A. Synthesis and characterization of Co3O4 nanoparticles by a simple method. C R Chim. 2014, 17, 352–358. [Google Scholar] [CrossRef]
- Heinemann, M.; Eifert, B.; Heiliger, C. Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3. Phys. Rev. B 2013, 87, 115111. [Google Scholar] [CrossRef]
- Zoolfakar, A.S.; Rani, R.A.; Morfa, A.J.; O’Mullane, A.P.; Kalantarzadeh, K. Nanostructured copper oxide semiconductors: A perspective on materials, synthesis methods and applications. J. Mater. Chem. C 2014, 2, 5247–5270. [Google Scholar] [CrossRef] [Green Version]
- Abd-Elkader, O.H.; Deraz, N.M. synthesis and Characterization of New Copper based Nanocomposite. Int. J. Electrochem. Sci. 2013, 8, 8614–8622. [Google Scholar]
- Cullity, B.D. Elements of X-ray Diffraction; Chapter 14; Addison-Wesly Publishing Co., Inc.: Singapore, 1976. [Google Scholar]
- Shaltout, A.A.; Abd-Elkader, O.H. The role of gas direction in a modified Grimm-type glow discharge for controlling the degree of crystallinity in brass alloy thin films. Vacuum 2015, 121, 105–112. [Google Scholar] [CrossRef]
- Karimzadeh, M.; Niknam, K.; Manouchehri, N.; Tarokh, D. A green route for the cross-coupling of azide anions with aryl halides under both base and ligand-free conditions: Exceptional performance of a Cu2O–CuO–Cu–C nanocomposite. RSC Adv. 2018, 8, 25785. [Google Scholar] [CrossRef] [Green Version]
- Boultif, A.; Louer, D. Powder pattern indexing with the dichotomy method. J. Appl. Cryst. 2004, 37, 724–731. [Google Scholar] [CrossRef]
- Andualem, W.W.; Kedir Sabir, F.K.; Mohammed, E.T.; Belay, H.H.; Gonfa, B.A. Synthesis of copper oxide nanoparticles using plant leaf extract of Catha edulis and its antibacterial activity. J. Nanotechnol. 2020, 2020, 2932434. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, H.; Wang, Y.; Che, H.; Gunawan, P.; Zhong, Z.; Li, H.; Su, F. Facile solvothermal synthesis of phase-pure Cu4O3 microspheres and their lithium storage properties. Chem. Mater. 2012, 24, 1136–1142. [Google Scholar] [CrossRef]
- Dubal, D.; Dhawale, D.S.; Salunkhe, R.; Jamdade, V.; Lokhande, C.D. Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J. Alloys Compd. 2010, 492, 26–30. [Google Scholar] [CrossRef]
- Ethiraj, A.S.; Kang, D.J. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Res. Lett. 2012, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Liu, X. Solution-phase synthesis of CuO hierarchical nanosheets at near-neutral pH and near-room temperature. Mater. Lett. 2007, 61, 2222–2226. [Google Scholar] [CrossRef]
- Alhumaimess, M.S.; Essawy, A.A.; Kamel, M.M.; Alsohaimi, I.H.; Hassan, H.M.A. Biogenic-Mediated Synthesis of Mesoporous Cu2O/CuO Nano-Architectures of Superior Catalytic Reductive towards Nitroaromatics. Nanomaterials 2020, 10, 781. [Google Scholar] [CrossRef] [Green Version]
- Al-Senani, G.M.; Abd-Elkader, O.H.; Deraz, N.M. Fabrication of Cu1.5Mn1.5O4 Nanoparticles Using One Step Self-Assembling Route to Enhance Energy Consumption. Appl. Sci. 2021, 11, 2034. [Google Scholar] [CrossRef]
- Shaban, M.; Abdelkarem, K.; El Sayed, A.M. Structural, optical and gas sensing properties of Cu2O/CuO mixed phase: Effect of the number of coated layers and (Cr + S) co-Dopin. Phase Transit. 2019, 92, 347–359. [Google Scholar] [CrossRef]
- Al-Senani, G.M.; Deraz, N.M.; Abd-Elkader, O.H. Magnetic and characterization studies of Co/Co3O4 nanocomposite. Processes 2020, 8, 844. [Google Scholar] [CrossRef]
- Ahmadova, T.O.; Durmusa, Z.; Baykala, A.; Kavas, H. A Simple Approach for the Synthesis of Co3O4 Nanocrystals. Inorg. Mater. 2011, 47, 426–430. [Google Scholar] [CrossRef]
- Mine, Y. Recent Advances in the Understanding of Egg White Protein Functionality. Trends Food Sci. Technol. 1995, 6, 225–232. [Google Scholar] [CrossRef]
- Lyckfeldt, O.; Brandt, J.; Lesca, S. Protein Forming—A Novel Shaping Technique for Ceramics. J. Eur. Ceram. Soc. 2000, 20, 2551–2559. [Google Scholar] [CrossRef]
- Dhara, S.; Bhargava, P. Egg White as an Environmentally Friendly Low-Cost Binder for Gel casting of Ceramics. J. Am. Ceram. Soc. 2001, 84, 3048–3050. [Google Scholar] [CrossRef]
- Dhara, S.; Bhargava, P. A Simple Direct Casting Route to Ceramic Foams. J. Am. Ceram. Soc. 2003, 86, 1645–1650. [Google Scholar] [CrossRef]
- Sharma, S.; Rani, R.; Rai, R.; Natarajan, T.S. Synthesis and characterization of CuO electrospum nanofiber using poly(vinyl acetate)/Cu(CH3COO)2 annealing method. Adv. Mater. Lett. 2013, 4, 749–753. [Google Scholar] [CrossRef]
- Asif, S.A.; Khan, S.; Asiri, A.M. Efficient solar photocatalyst based on cobalt oxide/iron oxide composite nanofibers for the detoxification of organic pollutants. Nanoscale Res. Lett. 2014, 9, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dar, M.A.; Kim, Y.S.; Kim, W.B.; Sohn, J.M.; Shin, H.S. Structural and magnetic properties of CuO nanoneedles synthesized by hydrothermal method. Appl. Surf. Sci. 2008, 254, 7477–7481. [Google Scholar] [CrossRef]
- Waldron, R.D. Infrared Spectra of Ferrites. Phys. Rev. 1955, 99, 1725–1727. [Google Scholar] [CrossRef]
- Djurek, D.; Prester, M.; Drobac, D.J.; Ivanda, M.; Vojta, D. Magnetic properties of nanoscaled paramelaconite Cu4O3−x (x = 0.0 and 0.5). J. Magn. Magn. Mater. 2015, 373, 183–187. [Google Scholar] [CrossRef]
- Gao, D.; Zhang, J.; Zhu, J.; Qi, J.; Zhang, Z.; Sui, W.; Shi, H.; Xue, D. Vacancy-mediated magnetism in pure copper oxide nanoparticles. Nanoscale Res. Lett. 2010, 5, 769–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meiklejohn, W.H.; Bean, C.P. New magnetic anisotropy. Phys. Rev. 1957, 105, 904–913. [Google Scholar] [CrossRef]
- Manohar, P.A.; Ferry, M.; Chandra, T. Five Decades of the Zener Equation. ISIJ Int. 1998, 38, 913. [Google Scholar] [CrossRef] [Green Version]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Trautt, Z.T.; Upmanyu, M.; Karma, A. Interface mobility from interface random walk. Science 2006, 314, 632–635. [Google Scholar] [CrossRef]
Sample | C1 | C2 | C3 | C4 |
---|---|---|---|---|
Weight g | 2.426 g | 0.0080 g | 0.0242 g | 0.0484 g |
wt.% | 100% | 0.198% | 0.599% | 1.198% |
2 Θ Calc. | C1 | C2 | C3 | C4 | h | k | l | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
2 Θ Obs. | Diff. | 2 Θ Obs. | Diff. | 2 Θ Obs. | Diff. | 2 Θ Obs. | Diff. | ||||
32.18 | 32.4609 | −0.2809 | 32.4817 | 0.1083 | 32.4669 | 0.1231 | 32.5161 | 0.0739 | 1 | 1 | 0 |
35.26 | 35.3798 | −0.1198 | 35.4735 | 0.0065 | 35.4828 | −0.0028 | 35.5464 | −0.0664 | 0 | 0 | 2 |
36.27 | 36.442 | 0.172 | 36.442 | 0.172 | - | - | - | - | 1 | 1 | 1 |
38.53 | 38.6807 | −0.1507 | 38.7153 | 0.0347 | 38.7036 | −0.0036 | 38.7308 | −0.0308 | −1 | 1 | 1 |
42.329 | 42.22 | 0.109 | - | - | - | - | - | - | 2 | 0 | 0 |
44.41 | 44.146 | −0.264 | 44.146 | 0.424 | 44.146 | −0.264 | 44.57 | 0.16 | 2 | 1 | 3 |
46.21 | 46.1327 | 0.0773 | - | - | - | - | - | - | −1 | 1 | 2 |
48.66 | 48.5869 | 0.0731 | 48.6777 | 0.0423 | 48.6896 | 0.0304 | 48.756 | 0.084 | −2 | 0 | 2 |
51.39 | 51.3039 | 0.0861 | - | - | - | - | - | - | 1 | 1 | 2 |
53.25 | 53.3673 | −0.1173 | 53.4211 | 0.0389 | 53.3808 | 0.0792 | 53.465 | −0.005 | 0 | 2 | 0 |
56.67 | 56.5976 | 0.0724 | - | - | - | - | - | - | 0 | 2 | 1 |
58.06 | 58.2724 | −0.2124 | 58.3234 | −0.0134 | 58.3271 | −0.0171 | 58.3276 | −0.0176 | 2 | 0 | 2 |
61.33 | 61.373 | −0.043 | 61.5353 | 0.0447 | 61.5426 | 0.0374 | - | - | −1 | 1 | 3 |
65.62 | 65.6686 | −0.0486 | 65.7755 | −0.1555 | 65.7459 | −0.1259 | 65.8059 | 0.0541 | 0 | 2 | 2 |
66.03 | 66.1 | −0.07 | 66.1404 | −0.1104 | 66.1369 | −0.1069 | 66.2657 | −0.0157 | −3 | 1 | 1 |
67.89 | 67.827 | 0.063 | 67.9609 | −0.0709 | 67.9631 | −0.0731 | 68.1016 | 0.0584 | 1 | 1 | 3 |
71.58 | 71.4887 | 0.0913 | - | - | - | - | - | - | −3 | 1 | 2 |
72.43 | 72.3356 | 0.0944 | 72.3549 | 0.0751 | 72.347 | 0.083 | 72.4318 | −0.0018 | 3 | 1 | 1 |
72.94 | 72.8446 | 0.0954 | - | - | - | - | - | - | 2 | 2 | 1 |
75.03 | 74.8512 | 0.1788 | - | - | - | - | - | - | −2 | 2 | 2 |
75.15 | 75.0387 | 0.1113 | 75.1539 | −0.0039 | 75.0985 | 0.0515 | 75.2513 | −0.1013 | −2 | 2 | 2 |
79.71 | 79.905 | −0.195 | 79.7296 | 0.0774 | - | - | - | - | 0 | 2 | 3 |
Sample | a (Å) | b (Å) | c (Å) | α (°) | β (°) | γ (°) | Volume (Å3) | Dx (g/cm3) | Space Group | Phases |
---|---|---|---|---|---|---|---|---|---|---|
C1 | 4.6981 | 3.4336 | 5.1471 | 90 | 99.65 | 90 | 81.85 | 6.499 | Monoclinic Cc9 | CuO (PDF 801917) |
C1 | 4.2667 | 4.2667 | 4.2667 | 90 | 90 | 90 | 77.67 | 6.117 | Cubic PN3M 224 | Cu2O (PDF 782026) |
C1 | 5.837 | 5.837 | 9.932 | 90 | 90 | 90 | 338.39 | 5.930 | Tetragonal 141/amd 141 | Cu4O3 (PDF 831665) |
C2 | 4.6970 | 3.4304 | 5.1331 | 90 | 99.59 | 90 | 81.85 | 6.499 | Monoclinic Cc9 | CuO (PDF 801917) |
C2 | 4.2667 | 4.2667 | 4.2667 | 90 | 90 | 90 | 77.67 | 6.117 | Cubic PN3M 224 | Cu2O (PDF 782026) |
C2 | 5.837 | 5.837 | 9.932 | 90 | 90 | 90 | 338.39 | 5.930 | Tetragonal 141/amd 141 | Cu4O3 (PDF 831665) |
C3 | 4.6968 | 3.4328 | 5.1316 | 90 | 99.58 | 90 | 81.58 | 6.499 | Monoclinic Cc9 | CuO (PDF 801917) |
C3 | 5.837 | 5.837 | 9.932 | 90 | 90 | 90 | 338.39 | 5.930 | Tetragonal 141/amd141 | Cu4O3 (PDF 831665) |
C4 | 4.6888 | 3.4278 | 5.1337 | 90 | 99.51 | 90 | 81.37 | 6.499 | Monoclinic Cc9 | CuO (PDF 801917) |
Sample | d (nm) | δ (Lines/nm2) | ε | σ (N/m2) | Phases |
---|---|---|---|---|---|
C1 | 54.30 | 3.39 × 10−4 | 6.38 × 10−4 | 0.06095452 | CuO (PDF 801917) |
C1 | 62.92 | 2.53 × 10−4 | 5.51 × 10−4 | 0.05430656 | Cu2O (PDF 782026) |
C1 | 104.50 | 9.16 × 10−5 | 3.32 × 10−4 | 0.038844 | Cu4O3 (PDF 831665) |
C2 | 56.89 | 3.09 × 10−4 | 6.09 × 10−4 | 0.05818386 | CuO (PDF 801917) |
C2 | 84.88 | 1.39 × 10−4 | 4.08 × 10−4 | 0.04021248 | Cu2O (PDF 782026) |
C2 | 85.64 | 1.36 × 10−4 | 4.05 × 10−4 | 0.047385 | Cu4O3 (PDF 831665) |
C3 | 56.89 | 3.09 × 10−4 | 6.09 × 10−4 | 0.05818386 | CuO (PDF 801917 |
C3 | 85.84 | 1.36 × 10−4 | 4.04 × 10−4 | 0.047268 | Cu4O3 (PDF 831665) |
C4 | 59.64 | 2.81 × 10−4 | 5.81 × 10−4 | 0.05550874 | CuO (PDF 801917) |
Samples | SBET (m2/g) | St (m2/g) | Vp (cc/g) | ȓ (nm) |
---|---|---|---|---|
C1 | 8.867 | 14.219 | 0.0526 | 23.298 |
C2 | 7.834 | 10.353 | 0.0430 | 21.932 |
C3 | 9.836 | 12.254 | 0.0750 | 30.495 |
C4 | 8.768 | 11.058 | 0.0843 | 38.454 |
Samples | Ms (emu/g) | Mr (emu/g) | Mr/Ms (emu/g) | Hc (Oe) |
---|---|---|---|---|
C1 | 0.0146 | 0.0020 | 0.1370 | 106.63 |
C2 | 0.5556 | 0.1408 | 0.2534 | 125.24 |
C3 | 1.1248 | 0.3308 | 0.2941 | 122.28 |
C4 | 2.3890 | 0.6307 | 0.2650 | 86.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Senani, G.M.; Al-Saeedi, S.I.; Al-Kadhi, N.S.; Abd-Elkader, O.H.; Deraz, N.M. Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites. Processes 2022, 10, 729. https://doi.org/10.3390/pr10040729
Al-Senani GM, Al-Saeedi SI, Al-Kadhi NS, Abd-Elkader OH, Deraz NM. Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites. Processes. 2022; 10(4):729. https://doi.org/10.3390/pr10040729
Chicago/Turabian StyleAl-Senani, Ghadah M., Samerah I. Al-Saeedi, Nada S. Al-Kadhi, Omar H. Abd-Elkader, and Nasrallah M. Deraz. 2022. "Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites" Processes 10, no. 4: 729. https://doi.org/10.3390/pr10040729
APA StyleAl-Senani, G. M., Al-Saeedi, S. I., Al-Kadhi, N. S., Abd-Elkader, O. H., & Deraz, N. M. (2022). Green Synthesis and Pinning Behavior of Fe-Doped CuO/Cu2O/Cu4O3 Nanocomposites. Processes, 10(4), 729. https://doi.org/10.3390/pr10040729