Mathematical Model of a Thermophilic Anaerobic Digestion for Methane Production of Wheat Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Mathematical Modelling Problem
2.3. Sequential Quadratic Programming
2.4. Genetic Algorithms
3. Results and Discussion
3.1. Experimental Studies
3.2. Mathematical Modelling
3.2.1. Structural Identification
3.2.2. Parameter Identification
3.2.3. Model Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Cellulose concentration | [mL/dm3] | |
Acidogenic bacteria concentration | [mL/dm3] | |
Glucose concentration | [mL/dm3] | |
Methanogenic bacteria concentration | [mL/dm3] | |
Acetate concentration | [mL/dm3] | |
Methane flow rate | [mL/dm3] | |
Specific growth rate of acidogenic bacteria | [h−1] | |
Specific growth rate of methanogenic bacteria | [h−1] | |
μ1max | Maximum specific growth rate of acidogenic bacteria | [h−1] |
Saturation coefficient for acidogenic bacteria | [mL/dm3] | |
Maintenance rate of acidogenic bacteria | [h−1] | |
Coefficient of biodegradability | [L/(g·h)] | |
Yield coefficient for acidogenic bacteria | [-] | |
Coefficient | [-] | |
μ2max | Maximum specific growth rate of methanogenic bacteria | [h−1] |
Saturation coefficient for methanogenic bacteria | [mL/dm3] | |
Maintenance rate of methanogenic bacteria | [h−1] | |
Yield coefficient for methanogenic bacteria | [-] | |
Yield coefficient for methane | [mL/dm3] |
References
- Schneider, S.H.; Easterling, W.E.; Mearms, L.O. Adaptation: Sensitivity to natural variability, agent assumptions, and dynamic climatic changes. Clim. Change 2000, 45, 203–221. [Google Scholar] [CrossRef]
- Haryana, A. Biomass Utilization as Renewable Energy for Optimization of National Energy Mix. Bappenas Work. Pap. 2018, 1, 55–65. [Google Scholar] [CrossRef]
- Guragain, Y.N.; Vadlani, P.V. Renewable Biomass Utilization: A Way Forward to Establish Sustainable Chemical and Processing Industries. Clean Technol. 2021, 3, 243–259. [Google Scholar] [CrossRef]
- Dahlgren, S. Biogas-based fuels as renewable energy in the transport sector: An overview of the potential of using CBG, LBG and other vehicle fuels produced from biogas. Biofuels 2020, 1–13. [Google Scholar] [CrossRef]
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef]
- Vadlani, P.V. Financing strategies for sustainable bioenergy and the commodity chemicals industry. In Green Energy to Sustainability: Strategies for Global Industries, 1st ed.; Vertès, A.A., Qureshi, N., Blaschek, H.P., Yukawa, H., Eds.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 569–586. [Google Scholar]
- Bakker, R.R.C.; Elbersen, H.W.; Poppens, R.P.; Lesschen, J.P. Rice Straw and Wheat Straw-Potential Feedstocks for the Biobased Economy; NL Agency: Utrecht, The Netherlands, 2013. [Google Scholar]
- Zheng, Q.; Zhou, T.; Wang, Y.; Cao, X.; Wu, S.; Zhao, M.; Wang, H.; Xu, M.; Zheng, B.; Zheng, J.; et al. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci. Rep. 2018, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Shang, G.; Zhang, C.; Wang, F.; Qiu, L.; Guo, X.; Xu, F. Liquid hot water pretreatment to enhance the anaerobic digestion of wheat straw—Effects of temperature and retention time. Environ. Sci. Pollut. Res. 2019, 26, 29424–29434. [Google Scholar] [CrossRef]
- Bolado-Rodriguez, S.; Toquero, C.; Martin-Juarez, J.; Travaini, R.; Garcia-Encina, P.A. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse. Bioresour. Technol. 2016, 201, 182–190. [Google Scholar] [CrossRef]
- Moset, V.; Poulsen, M.; Wahid, R.; Hojberg, O.; Moller, H.B. Mesophilic versus thermophilic anaerobic digestion of cattle manure: Methane productivity and microbial ecology. Microb. Biotechnol. 2015, 8, 787–800. [Google Scholar] [CrossRef]
- Gómez, X.; Blanco, D.; Lobato, A.; Calleja, A.; Martínez-Núñez, F.; Martin-Villacorta, J. Digestion of cattle manure under mesophilic and thermophilic conditions: Characterization of organic matter applying thermal analysis and 1H NMR. Biodegradation 2011, 22, 623–635. [Google Scholar] [CrossRef]
- Byrd, R.H.; Curtis, F.E.; Nocedal, J. Infeasibility Detection and SQP Methods for Nonlinear Optimization. SIAM J. Optim. 2010, 20, 2281–2299. [Google Scholar] [CrossRef] [Green Version]
- Gill, P.E.; Wong, E. Sequential Quadratic Programming Methods, UCSD Department of Mathematics; Technical Report NA-10-03; University of California: San Diego, CA, USA, 2010. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems, 2nd ed.; MIT Press: Cambridge, UK, 1992. [Google Scholar]
- Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Publishing Company: Boston, MA, USA, 1989. [Google Scholar]
- Chopard, B.; Tomassini, M. Performance and limitations of metaheuristics. In An Introduction to Metaheuristics for Optimization; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 191–203. [Google Scholar]
- Dillen, W.; Lombaert, G.; Schevenels, M. Performance Assessment of Metaheuristic Algorithms for Structural Optimization Taking Into Account the Influence of Algorithmic Control Parameters. Front. Built Environ. 2021, 7, 618851. [Google Scholar] [CrossRef]
- Djebedjian, B.; Abdel-Gawad, H.A.A.; Ezzeldin, R.M. Global performance of metaheuristic optimization tools for water distribution networks. Ain Shams Eng. J. 2021, 12, 223–239. [Google Scholar] [CrossRef]
- Roeva, O.; Zoteva, D.; Lyubenova, V. Escherichia coli Cultivation Process Modelling Using ABC-GA Hybrid Algorithm. Processes 2021, 9, 1418. [Google Scholar] [CrossRef]
- Roeva, O.; Angelova, M.; Zoteva, D.; Pencheva, T. Water Cycle Algorithm for Modelling of Fermentation Processes. Processes 2020, 8, 920. [Google Scholar] [CrossRef]
- Roeva, O.; Atanassova, V. Cuckoo search algorithm for model parameter identification. Int. J. Bioautom. 2016, 20, 483–492. [Google Scholar]
- Updegraff, D.M. Semimicrodetermination of cellulose inbiological materials. Anal. Biochem. 1969, 32, 420–424. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer Series in Operations Research; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Roeva, O.; Zoteva, D.; Castillo, O. Joint Set-up of Parameters in Genetic Algorithms and the Artificial Bee Colony Algorithm: An Approach for Cultivation Process Modelling. Soft Comput. 2020, 25, 2015–2038. [Google Scholar] [CrossRef]
- Everitt, B.S.; Skrondal, A. The Cambridge Dictionary of Statistics; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Infante, A.; Vicidomini, M. Modeling of the Anaerobic Digestion of Organic Wastes: Integration of Heat Transfer and Biochemical Aspects. Energies 2020, 13, 2702. [Google Scholar] [CrossRef]
- Xu, F.; Li, Y.; Ge, X.; Yang, L.; Li, Y. Anaerobic digestion of food waste–Challenges and opportunities. Bioresour. Technol. 2018, 247, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, X.; Fang, Y.; Lai, W.; Xu, S.; Lichtfouse, E. Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar. Renew. Energy 2022, 188, 465–475. [Google Scholar] [CrossRef]
Duration, day | Cellulose, mL/dm3 | Glucose, mL/dm3 | Acetate, mL/dm3 | Methane, mL/dm3 |
---|---|---|---|---|
0 | 10.73 | 0.013 | 0.13 | 0.0000 |
1 | 9.69 | 0.053 | 1.36 | 0.0099 |
2 | 8.84 | 0.082 | 1.69 | 0.0771 |
3 | 8.16 | 0.101 | 1.00 | 0.1224 |
4 | 7.62 | 0.113 | 0.11 | 0.1313 |
5 | 7.20 | 0.119 | 0.14 | 0.0301 |
6 | 6.90 | 0.122 | 0.13 | 0.0122 |
7 | 6.68 | 0.122 | 0.11 | 0.0136 |
8 | 6.54 | 0.122 | 0.09 | 0.0151 |
9 | 6.45 | 0.122 | 0.09 | 0.0130 |
10 | 6.39 | 0.124 | 0.09 | 0.0120 |
11 | 6.35 | 0.126 | 0.09 | 0.0110 |
12 | 6.30 | 0.126 | 0.08 | 0.0100 |
13 | 6.23 | 0.124 | 0.08 | 0.0090 |
14 | 6.13 | 0.122 | 0.08 | 0.0090 |
15 | 5.96 | 0.120 | 0.08 | 0.0090 |
Duration, day | Cellulose, mL/dm3 | Glucose, mL/dm3 | Acetate, mL/dm3 | Methane, mL/dm3 |
---|---|---|---|---|
0 | 11.04 | 0.019 | 0.15 | 0.000 |
1 | 9.83 | 0.060 | 1.40 | 0.010 |
2 | 8.85 | 0.092 | 1.70 | 0.012 |
3 | 8.07 | 0.116 | 1.27 | 0.140 |
4 | 7.48 | 0.132 | 0.96 | 0.150 |
5 | 7.04 | 0.143 | 0.43 | 0.100 |
6 | 6.73 | 0.149 | 0.28 | 0.047 |
7 | 6.54 | 0.152 | 0.12 | 0.030 |
8 | 6.44 | 0.153 | 0.08 | 0.030 |
9 | 6.41 | 0.152 | 0.08 | 0.030 |
10 | 6.42 | 0.152 | 0.08 | 0.030 |
11 | 6.45 | 0.153 | 0.08 | 0.030 |
12 | 6.48 | 0.152 | 0.08 | 0.030 |
13 | 6.49 | 0.150 | 0.08 | 0.020 |
14 | 6.45 | 0.150 | 0.08 | 0.020 |
15 | 6.34 | 0.150 | 0.08 | 0.020 |
Parameter | GA |
---|---|
Population number (Npop) | 200 |
Generation gap (ggap) | 0.97 |
Maximal number of iterations (iter_max) | 100 |
Crossover probability (pc) | 0.75 |
Mutation probability (pm) | 0.01 |
Parameter | Deterministic Algorithm | Metaheuristic Algorithm | Deterministic Algorithm |
---|---|---|---|
SQP1 | GA | SQP2 | |
Value | Best | Value | |
J | 13.91 | 9.87 | 10.22 |
MAE | 2.55 | 0.62 | 0.64 |
0.29 | 0.74 | 0.98 | |
1.67 | 19.16 | 10.96 | |
0.10 | 0.0003 | 0.004 | |
0.34 | 0.51 | 0.52 | |
0.04 | 0.001 | 0.001 | |
2.03 | 1998 | 2476 | |
0.5 | 3.69 | 4.85 | |
0.31 | 1.005 | 1.83 | |
0.18 | 7.22 | 5.74 | |
3.65 | 0.005 | 0.01 | |
0.1 | 0.046 | 0.029 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chorukova, E.; Kabaivanova, L.; Hubenov, V.; Simeonov, I.; Roeva, O. Mathematical Model of a Thermophilic Anaerobic Digestion for Methane Production of Wheat Straw. Processes 2022, 10, 742. https://doi.org/10.3390/pr10040742
Chorukova E, Kabaivanova L, Hubenov V, Simeonov I, Roeva O. Mathematical Model of a Thermophilic Anaerobic Digestion for Methane Production of Wheat Straw. Processes. 2022; 10(4):742. https://doi.org/10.3390/pr10040742
Chicago/Turabian StyleChorukova, Elena, Lyudmila Kabaivanova, Venelin Hubenov, Ivan Simeonov, and Olympia Roeva. 2022. "Mathematical Model of a Thermophilic Anaerobic Digestion for Methane Production of Wheat Straw" Processes 10, no. 4: 742. https://doi.org/10.3390/pr10040742
APA StyleChorukova, E., Kabaivanova, L., Hubenov, V., Simeonov, I., & Roeva, O. (2022). Mathematical Model of a Thermophilic Anaerobic Digestion for Methane Production of Wheat Straw. Processes, 10(4), 742. https://doi.org/10.3390/pr10040742