A New Computer-Aided Optimization-Based Method for the Design of Single Multi-Pass Plate Heat Exchangers
Abstract
:1. Introduction
2. Methods
2.1. Detailed Design Methodology of PHEs
2.1.1. Flow Arrangement Selection
2.1.2. Plate Pattern Selection
2.1.3. Thermal-Hydraulic Model
2.2. Optimization Model of Plate Heat Exchangers
3. Case Study
3.1. Case Study 1: Optimization Design of Gasket Plate Heat Exchanger
3.1.1. Verification of the New Design Methodology
3.1.2. The Computer-Aided Optimization Process of a Multi-Pass GPHE Design
3.2. Case Study 2: Optimization Design of Welded Plate Heat Exchanger
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature/Abbreviation
PHE | plate heat exchanger |
GPHE | gasket plate heat exchanger |
WPHE | welded plate heat exchanger |
LMTD | logarithmic mean temperature difference |
NTU | number of transfer units |
MINLP | mixed integer nonlinear programming |
Re | Reynold number |
Nu | Nusselt number |
Pr | Prandtl number |
Symbols | |
Lp | plate length |
W | plate width |
Dport | port diameter |
de | equivalent diameter |
Ab | plate area |
fch | cross-section area |
μ | dynamic viscosity |
λ | heat conductivity |
A | heat transfer area |
N | total number of blocks |
X | number of passes for stream |
h | heat transfer coefficient |
Q | heat load |
∆TLMTD | logarithmic mean temperature difference |
⍴ | stream density |
v | stream velocity in each channel |
t | width of channel |
Rf | fouling resistance of streams |
g | flow rate of the stream |
a | cross-section area between channels |
T | temperature |
CP | heat capacity |
R | the ratio of flow heat capacities of streams |
Atotal | total heat transfer area |
f | friction factor |
∆Pheight | pressure drop of height change |
∆Pfriction | pressure drop due to friction |
H | height |
U | heat transfer coefficient |
Q0 | required heat load |
Greek symbol | |
δ | inter-plate gap |
𝛽 | chevron angle |
Subscript | |
b | block |
h | hot stream |
c | cold stream |
w | wall |
1 | inlet |
2 | outlet |
max | maximum |
References
- Cui, Z.; Lin, H.; Wu, Y.; Wang, Y.; Feng, X. Optimization of Pipeline Network Layout for Multiple Heat Sources Distributed Energy Systems Considering Reliability Evaluation. Processes 2021, 9, 1308. [Google Scholar] [CrossRef]
- Sundén, B.; Manglik, R.M. Plate Heat Exchangers: Design, Applications and Performance; Wit Press: Southampton, MA, USA, 2007. [Google Scholar]
- Arsenyeva, O.P.; Tovazhnyansky, L.L.; Kapustenko, P.O.; Khavin, G.L. Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries. Energy 2011, 36, 4588–4598. [Google Scholar] [CrossRef] [Green Version]
- Kakac, S.; Liu, H.; Pramuanjaroenkij, A. Heat Exchangers: Selection, Rating, and Thermal Design; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Shah, R.K.; Sekulic, D.P. Fundamentals of Heat Exchanger Design; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Ali, S.S.; Arsad, A.; Hossain, S.K.; Basu, A.; Asif, M. Energy Optimization and Effective Control of Reactive Distillation Process for the Production of High Purity Biodiesel. Processes 2021, 9, 1340. [Google Scholar] [CrossRef]
- Coletti, F.; Macchietto, S. A dynamic, distributed model of shell-and-tube heat exchangers undergoing crude oil fouling. Ind. Eng. Chem. Res. 2011, 50, 4515–4533. [Google Scholar] [CrossRef]
- Berce, J.; Zupančič, M.; Može, M.; Golobič, I. A Review of Crystallization Fouling in Heat Exchangers. Processes 2021, 9, 1356. [Google Scholar] [CrossRef]
- Wang, T.; Luan, W.; Wang, W.; Tu, S.-T. Waste heat recovery through plate heat exchanger based thermoelectric generator system. Appl. Energy 2014, 136, 860–865. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, F.; Jia, M.; Zhang, S. Modeling of plate heat exchanger based on sensitivity analysis and model updating. Chem. Eng. Res. Des. 2018, 138, 418–432. [Google Scholar] [CrossRef]
- Mehrabian, M. Construction, performance, and thermal design of plate heat exchangers. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2009, 223, 123–131. [Google Scholar] [CrossRef]
- Elmaaty, T.M.A.; Kabeel, A.; Mahgoub, M. Corrugated plate heat exchanger review. Renew. Sustain. Energy Rev. 2017, 70, 852–860. [Google Scholar] [CrossRef]
- Yoon, W.; Jeong, J.H. Development of a numerical analysis model using a flow network for a plate heat exchanger with consideration of the flow distribution. Int. J. Heat Mass Transf. 2017, 112, 1–17. [Google Scholar] [CrossRef]
- Mota, F.A.; Ravagnani, M.A.; Carvalho, E. Optimal design of plate heat exchangers. Appl. Therm. Eng. 2014, 63, 33–39. [Google Scholar] [CrossRef]
- Abu-Khader, M.M. Plate heat exchangers: Recent advances. Renew. Sustain. Energy Rev. 2012, 16, 1883–1891. [Google Scholar] [CrossRef]
- Amalfi, R.L.; Vakili-Farahani, F.; Thome, J.R. Flow boiling and frictional pressure gradients in plate heat exchangers. Part 1: Review and experimental database. Int. J. Refrig. 2016, 61, 166–184. [Google Scholar] [CrossRef]
- Zhong, Y.; Deng, K.; Zhao, S.; Hu, J.; Zhong, Y.; Li, Q.; Wu, Z.; Lu, Z.; Wen, Q. Experimental and numerical study on hydraulic performance of chevron brazed plate heat exchanger at low Reynolds number. Processes 2020, 8, 1076. [Google Scholar] [CrossRef]
- Khan, T.; Khan, M.; Chyu, M.-C.; Ayub, Z. Experimental investigation of single phase convective heat transfer coefficient in a corrugated plate heat exchanger for multiple plate configurations. Appl. Therm. Eng. 2010, 30, 1058–1065. [Google Scholar] [CrossRef]
- Neagu, A.A.; Koncsag, C.I. Model Validation for the Heat Transfer in Gasket Plate Heat Exchangers Working with Vegetable Oils. Processes 2022, 10, 102. [Google Scholar] [CrossRef]
- Shaji, K.; Das, S.K. Effect of plate characteristics on axial dispersion and heat transfer in plate heat exchangers. J. Heat Transf. 2013, 135, 041801. [Google Scholar] [CrossRef]
- Vafajoo, L.; Moradifar, K.; Hosseini, S.M.; Salman, B. Mathematical modelling of turbulent flow for flue gas–air Chevron type plate heat exchangers. Int. J. Heat Mass Transf. 2016, 97, 596–602. [Google Scholar] [CrossRef]
- Kılıç, B.; İpek, O. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles. Heat Mass Transf. 2017, 53, 725–731. [Google Scholar] [CrossRef]
- Kumar, B.; Soni, A.; Singh, S. Effect of geometrical parameters on the performance of chevron type plate heat exchanger. Exp. Therm. Fluid Sci. 2018, 91, 126–133. [Google Scholar] [CrossRef]
- Hesselgreaves, J.E. Compact Heat Exchangers: Selection, Design and Operation; Gulf Professional Publishing: Houston, TX, USA, 2001. [Google Scholar]
- Promvonge, P.; Tongyote, P.; Skullong, S. Thermal behaviors in heat exchanger channel with V-shaped ribs and grooves. Chem. Eng. Res. Des. 2019, 150, 263–273. [Google Scholar] [CrossRef]
- Cooper, A.; Usher, J.D. Plate heat exchangers. In Heat Exchanger Design Handbook; Hemisphere Publishing Corporation: London, UK, 1983. [Google Scholar]
- Shah, R.; Focke, W. Plate heat exchangers and their design theory. In Heat Transfer Equipment Design; Shah, R.K., Subbarao, E.C., Mashelkar, R.A., Eds.; Hemisphere Publishing: Washington, DC, USA, 1988; pp. 227–254. [Google Scholar]
- Wang, L.; Sunden, B. Optimal design of plate heat exchangers with and without pressure drop specifications. Appl. Therm. Eng. 2003, 23, 295–311. [Google Scholar] [CrossRef]
- Gut, J.A.; Pinto, J.M. Optimal configuration design for plate heat exchangers. Int. J. Heat Mass Transf. 2004, 47, 4833–4848. [Google Scholar] [CrossRef]
- Najafi, H.; Najafi, B. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm. Heat Mass Transf. 2010, 46, 639–647. [Google Scholar] [CrossRef]
- Picón-Núñez, M.; Martínez-Rodríguez, G.; Lopez-Robles, J. Alternative design approach for multipass and multi-stream plate heat exchangers for use in heat recovery systems. Heat Transf. Eng. 2006, 27, 12–21. [Google Scholar] [CrossRef]
- Cocks, A. Plate heat exchanger design by computer. Trans. Inst. Chem. Eng. Chem. Eng. 1969, 47, C193. [Google Scholar]
- Kumar, H. The plate heat exchanger: Construction and design. In Proceedings of the First UK National Conference on Heat transfer, Leeds, UK, 3–5 July 1984; Volume 86, pp. 1275–1288. [Google Scholar]
- Zinger, N.; Barmina, L.; Taradai, A. Design of plate heat exchangers for heat supply systems. Therm. Eng. 1988, 35, 141e5. [Google Scholar]
- Pignotti, A.; Shah, R. Effectiveness-number of transfer units relationships for heat exchanger complex flow arrangements. Int. J. Heat Mass Transf. 1992, 35, 1275–1291. [Google Scholar] [CrossRef]
- Pignotti, A.; Tamborenea, P.I. Thermal effectiveness of multipass plate exchangers. Int. J. Heat Mass Transf. 1988, 31, 1983–1991. [Google Scholar] [CrossRef]
- Kandlikar, S.G.; Shah, R.K. Asymptotic effectiveness-NTU formulas for multipass plate heat exchangers. J. Heat Transf. 1989, 111, 314–321. [Google Scholar] [CrossRef]
- Tovazhnyanskii, L.; Kapustenko, P.; Pavlenko, V.; Derevyanchenko, I.; Babak, T. The optimum design of multi-pass dismountable plate heat exchangers. Chem. Pet. Eng. 1992, 28, 354–359. [Google Scholar] [CrossRef]
- Arsenyeva, O.; Tovazhnyanskyy, L.; Kapustenko, P.; Khavin, G. Mathematical modelling and optimal design of plate-and-frame heat exchangers. Chem. Eng. Trans. 2009, 18, 791–796. [Google Scholar]
- Wright, A.; Heggs, P. Rating calculation for plate heat exchanger effectiveness and pressure drop using existing performance data. Chem. Eng. Res. Des. 2002, 80, 309–312. [Google Scholar] [CrossRef]
- Arsenyeva, O.P.; Tovazhnyanskyy, L.L.; Kapustenko, P.O.; Khavin, G.L.; Yuzbashyan, A.P.; Arsenyev, P.Y. Two types of welded plate heat exchangers for efficient heat recovery in industry. Appl. Therm. Eng. 2016, 105, 763–773. [Google Scholar] [CrossRef]
- Fodor, Z.; Varbanov, P.S.; Klemeš, J.J. Total site targeting accounting for individual process heat transfer characteristics. Chem. Eng. Trans. 2010, 21, 49–54. [Google Scholar]
- Kumar, V.; Tiwari, A.K.; Ghosh, S.K. Effect of chevron angle on heat transfer performance in plate heat exchanger using ZnO/water nanofluid. Energy Convers. Manag. 2016, 118, 142–154. [Google Scholar] [CrossRef]
- Kotjabasakis, E.; Linnhoff, B. Sensitivity tables for the design of flexible processes. Pt. 1: How much contingency in heat exchanger networks is cost-effective? Chem. Eng. Res. Des. 1986, 64, 197–211. [Google Scholar]
- Smith, R. Chemical Process: Design and Integration; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Martin, H. A theoretical approach to predict the performance of chevron-type plate heat exchangers. Chem. Eng. Process. Process Intensif. 1996, 35, 301–310. [Google Scholar] [CrossRef]
- Taal, M.; Bulatov, I.; Klemeš, J.; Stehlík, P. Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Appl. Therm. Eng. 2003, 23, 1819–1835. [Google Scholar] [CrossRef]
- Guo, K. Optimisation of Plate/Plate-Fin Heat Exchanger Design. Ph.D. Thesis, University of Manchester, Manchester, UK, 2015. [Google Scholar]
- Misener, R.; Floudas, C.A. ANTIGONE: Algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 2014, 59, 503–526. [Google Scholar] [CrossRef]
- Tamakloe, E.K.; Polley, G.T.; Picón-Núñez, M. Design of Compabloc exchangers to mitigate refinery fouling. Appl. Therm. Eng. 2013, 60, 441–448. [Google Scholar] [CrossRef]
Plate Type | δ, mm | de, mm | W, mm | Ab, mm2 | dport, mm | fch × 103, mm | Lp, mm |
---|---|---|---|---|---|---|---|
M3 | 2.4 | 4.8 | 100 | 0.03 | 36 | 0.240 | 320 |
M6 | 2.0 | 4.0 | 216 | 0.15 | 50 | 0.432 | 694 |
M6M | 3.0 | 6.0 | 210 | 0.14 | 50 | 0.630 | 666 |
M10B | 2.5 | 5.0 | 334 | 0.24 | 100 | 0.835 | 719 |
M15B | 2.5 | 5.0 | 449 | 0.62 | 150 | 1.123 | 1381 |
Plate Type | M3 | M6 | M6M | M10B | M15B | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Channel type | H | L | M | H | L | M | H | L | M | H | L | M | H | L | M |
m | 0.265 | 0.12 | 0.18 | 0.25 | 0.12 | 0.165 | 0.27 | 0.11 | 0.14 | 0.224 | 0.126 | 0.117 | 0.26 | 0.085 | 0.13 |
s | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.71 | 0.73 | 0.713 | 0.693 | 0.748 | 0.7 | 0.74 | 0.74 |
Cold Side | Hot Side | Units | |
---|---|---|---|
Flow rate | 5 | 15 | m3/h |
Inlet temperature | 28 | 95 | °C |
Target temperature | 90.5 | 79.36 | °C |
Density | 978.4 | 960 | kg/m3 |
Viscosity | 15.03 | 0.297 | cP |
Thermal conductivity | 0.66 | 0.68 | W/m K |
Heat capacity | 3.18 | 4.21 | kJ/kg K |
Flow Arrangement | 1–1 | 2–1 | 3–1 | 4–1 | 1–2 | 2–2 | 3–2 | 4–2 |
---|---|---|---|---|---|---|---|---|
Plate type | M6M | M6M | M6M | M6M | M6M | M6M | M6M | M6M |
Basic design: Total area (m2) | 7.56 | 32.34 | 21.7 | 35.48 | 9.8 | 6.58 | 8.26 | 8.68 |
New design: Total area (m2) | 7.56 | 32.34 | 21.7 | 35.48 | 9.8 | 6.58 | 8.26 | 8.68 |
Flow Arrangement | 1–3 | 2–3 | 3–3 | 4–3 | 1–4 | 2–4 | 3–4 | 4–4 |
Plate type | M6M | M6M | M6M | M6M | M6M | M6M | M6M | M6M |
Basic design: Total area (m2) | 5.88 | 6.58 | 5.74 | 6.72 | 8.54 | 5.04 | 6.44 | 6.72 |
New design: Total area (m2) | 5.88 | 6.58 | 5.74 | 6.72 | 8.54 | 5.04 | 6.44 | 6.72 |
Flow Arrangement | 1–1 | 2–1 | 3–1 | 4–1 | 1–2 | 2–2 | 3–2 | 4–2 |
---|---|---|---|---|---|---|---|---|
Plate type | M6 | M10B | M6 | M15B | M10B | M6 | M10B | M6M |
Number of plates | 60 | 136 | 135 | 36 | 34 | 44 | 30 | 64 |
Total area (m2) | 8.76 | 32.64 | 21.00 | 22.32 | 8.09 | 6.60 | 7.20 | 8.96 |
Flow Arrangement | 1–3 | 2–3 | 3–3 | 4–3 | 1–4 | 2–4 | 3–4 | 4–4 |
Plate type | M6M | M6 | M6M | M10B | M10B | M6 | M6 | M10B |
Number of plates | 39 | 30 | 39 | 24 | 84 | 32 | 36 | 32 |
Total area (m2) | 5.46 | 4.50 | 5.46 | 5.76 | 19.6 | 4.80 | 5.4 | 7.68 |
Crude Side | Hot Side | Units | |
---|---|---|---|
Flow rate | 36.4 | 64.5 | kg/s |
Inlet temperature | 172 | 306 | °C |
Target temperature | 260 | 260 | °C |
Density | 700 | 733 | kg/m3 |
Viscosity | 0.44 | 0.12 | cP |
Thermal conductivity | 0.1 | 0.12 | W/m K |
Heat capacity | 2610 | 2820 | J/kg K |
Flow Arrangement | 1–1 | 2–1 | 3–1 | 4–1 | 1–2 | 2–2 | 3–2 | 4–2 |
---|---|---|---|---|---|---|---|---|
Plate type | M15B | M10B | M15B | M15B | M6 | M10B | M6 | M6M |
Number of plates | 58 | 542 | 174 | 188 | 378 | 136 | 210 | 288 |
Total area (m2) | 35.96 | 130.08 | 107.88 | 116.56 | 56.7 | 32.64 | 31.5 | 40.32 |
Flow Arrangement | 1–3 | 2–3 | 3–3 | 4–3 | 1–4 | 2–4 | 3–4 | 4–4 |
Plate type | M10B | M10B | M6M | M6 | M10B | M6M | M15B | M10B |
Number of plates | 258 | 108 | 575 | 480 | 200 | 256 | 72 | 208 |
Total area (m2) | 61.92 | 25.92 | 80.5 | 72 | 48 | 35.84 | 44.64 | 49.92 |
Percentage | −50% | −40% | −30% | −20% | −10% | 0 | 10% | 20% | 30% | 40% | 50% |
---|---|---|---|---|---|---|---|---|---|---|---|
Flow rate | 32.25 | 38.7 | 45.15 | 51.6 | 58.05 | 64.5 | 70.95 | 77.4 | 83.85 | 90.3 | 96.75 |
Plate type | M6 | M6 | M6 | M6 | M15B | M15B | M15B | M15B | M15B | M15B | M15B |
Number of plates | 90 | 115 | 159 | 203 | 54 | 58 | 63 | 112 | 250 | 581 | 1800 |
Total area (m2) | 13.5 | 17.25 | 22.5 | 30.45 | 33.48 | 35.96 | 39.06 | 69.44 | 155 | 360.22 | 1116 |
Percentage (%) | −50% | −40% | −30% | −20% | −10% | 0 | 10% | 20% | 30% | 40% | 50% |
---|---|---|---|---|---|---|---|---|---|---|---|
Flow rate | 18.2 | 21.84 | 25.48 | 29.12 | 32.76 | 36.4 | 40.04 | 43.68 | 47.32 | 50.96 | 54.6 |
Plate type | M15B | M15B | M15B | M15B | M15B | M15B | M15B | M15B | M15B | M15B | M15B |
Number of plates | 90 | 115 | 159 | 203 | 54 | 58 | 63 | 112 | 250 | 581 | 1800 |
Total area (m2) | 13.5 | 17.25 | 22.5 | 30.45 | 33.48 | 35.96 | 39.06 | 69.44 | 155 | 360.22 | 1116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, K.; Qin, K.; Wu, H.; Smith, R. A New Computer-Aided Optimization-Based Method for the Design of Single Multi-Pass Plate Heat Exchangers. Processes 2022, 10, 767. https://doi.org/10.3390/pr10040767
Xu K, Qin K, Wu H, Smith R. A New Computer-Aided Optimization-Based Method for the Design of Single Multi-Pass Plate Heat Exchangers. Processes. 2022; 10(4):767. https://doi.org/10.3390/pr10040767
Chicago/Turabian StyleXu, Kexin, Kang Qin, Hao Wu, and Robin Smith. 2022. "A New Computer-Aided Optimization-Based Method for the Design of Single Multi-Pass Plate Heat Exchangers" Processes 10, no. 4: 767. https://doi.org/10.3390/pr10040767
APA StyleXu, K., Qin, K., Wu, H., & Smith, R. (2022). A New Computer-Aided Optimization-Based Method for the Design of Single Multi-Pass Plate Heat Exchangers. Processes, 10(4), 767. https://doi.org/10.3390/pr10040767