GC–MS-Based Metabolites Profiling, In Vitro Antioxidant, Anticancer, and Antimicrobial Properties of Different Solvent Extracts from the Botanical Parts of Micromeria fruticosa (Lamiaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Sample
2.2. Extraction of Crude Extracts
2.3. DPPH• Radical Scavenging Activity
2.4. Antibacterial and Antifungal Activity Tests
2.4.1. Preparation of Extracts
2.4.2. Test Microorganisms
2.4.3. Determination of the Minimum Inhibitory Concentration (MIC) against Bacteria
2.4.4. Determination of MIC against Yeast
2.5. Antitumor Activity Test
2.5.1. Plant Extracts’ Preparation
2.5.2. Cell Line and Culture Medium
2.5.3. Inverted Microscopy Visualization Screening
2.5.4. MTT Assay
2.5.5. MTT Procedure
2.5.6. The GC–MS Analysis
2.6. ICP-MS Analysis
3. Results and Discussion
3.1. GC-MS Analysis of the Phytochemical Compenents
3.2. ICP-MS Analysis
3.3. DPPH Antioxidant Activity
3.4. Antimicrobial Effects
3.5. Antitumor Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Metwaly, A.; Ghoneim, M.; Eissa, I.; Elsehemy, I.; Mostafa, A.; Hegazy, M.; Afifi, W.M.; Dou, D. Traditional ancient Egyptian medicine: A review. Saudi J. Biol. Sci. 2021, 28, 5823–5832. [Google Scholar] [CrossRef] [PubMed]
- Howes, M.J.R.; Quave, C.L.; Collemare, J.; Tatsis, E.C.; Twilley, D.; Lulekal, E.; Farlow, A.; Li, L.; Cazar, M.E.; Leaman, D.J.; et al. Molecules from nature: Reconciling biodiversity conservation and global healthcare imperatives for sustainable use of medicinal plants and fungi. Plants People Planet. 2020, 2, 463–481. [Google Scholar] [CrossRef]
- Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.; Dettweiler, M.; Marquez, L.; Salam, A.M.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. A Systematic Review of Plants With Antibacterial Activities: A Taxonomic and Phylogenetic Perspective. Front. Pharmacol. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Shehab, N.; Abu-Gharbieh, E. Constituents and biological activity of the essential oil and the aqueous extract of Micromeria fruticosa (L.) Druce subsp. serpyllifolia. Pak. J. Pharm. Sci. 2012, 25, 687–692. [Google Scholar]
- Vladimir-Knežević, S.; Cvijanović, O.; Blažeković, B.; Kindl, M.; Štefan, M.; Domitrović, R. Hepatoprotective effects of Micromeria croatica ethanolic extract against CCl4–induced liver injury in mice. BMC Complement. Altern Med. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Abu-Reidah, I.; Arráez-Román, D.; Al-Nuri, M.; Warad, I.; Segura-Carretero, A. Untargeted metabolite profiling and phytochemical analysis of Micromeria fruticosa L. (Lamiaceae) leaves. Food Chem. 2019, 279, 128–143. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Ceylan, O.; Zeljković, S.Ć. Micromeria myrtifolia: Essential Oil Composition and Biological Activity. Nat. Prod. Commun. 2019, 14, 1934578X19851687. [Google Scholar] [CrossRef] [Green Version]
- Pezzani, R.; Salehi, B.; Vitalini, S.; Iriti, M.; Zuñiga, F.; Sharifi-Rad, J.; Martorell, M.; Martins, N. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina 2019, 55, 110. [Google Scholar] [CrossRef] [Green Version]
- Agidew, M. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bull. Natl. Res. Cent. 2022, 46. [Google Scholar] [CrossRef]
- Amessis-Ouchemoukh, N.; Abu-Reidah, I.; Quirantes-Piné, R.; Madani, K.; Segura-Carretero, A. Phytochemical profiling, in vitro evaluation of total phenolic contents and antioxidant properties of Marrubium vulgare (horehound) leaves of plants growing in Algeria. Ind. Crops Prod. 2014, 61, 120–129. [Google Scholar] [CrossRef]
- Set the Standard for Quality in Your Laboratory With CLSI. Available online: https://clsi.org/media/1795/catalog2017_web.pdf (accessed on 30 March 2022).
- CLSI (Clinical Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement 100, Catalog 2017/2018; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Šamec, D.; Zeljkovic, S.C. Analytical methods focused on studying phytonutrients in food. In Phytonutrients in Food; Elsevier: Amsterdam, The Netherlands, 2020; pp. 237–244. [Google Scholar]
- Baser, K.H.C.; Kirimer, N.; Tümen, G. Pulegone-Rich Essential Oils of Turkey. J. Essent. Oil Res. 1998, 10, 1–8. [Google Scholar] [CrossRef]
- Singh, M.; Smith, J.; Bailey, M. Using natural antimicrobials to enhance the safety and quality of poultry. In Handbook of Natural Antimicrobials for Food Safety and Quality; Woodhead Publishing: Sawston, UK, 2015; pp. 375–401. [Google Scholar]
- Rigano, D.; Formisano, C.; Senatore, F.; Bellone, G.; Bruno, M.; Rosselli, S. Chemical composition of the essential oil from aerial parts of Micromeria fruticulosa (Bertol.) Grande (Lamiaceae) growing wild in Southern Italy. Planta Med. 2006, 72, P_228. [Google Scholar] [CrossRef]
- Karau, G.M.; Njagi, E.N.; Machocho, A.K.; Wangai, L.N.; Nthinga, M.J. Chemical composition and in vitro antioxidant activities of Ocimum americanum. Adv. Anal. Chem. Instrum. 2015, 5, 42–49. [Google Scholar]
- Kamatou, G.; Vermaak, I.; Viljoen, A.; Lawrence, B. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry 2013, 96, 15–25. [Google Scholar] [CrossRef]
- Velmurugan, G.V.; Anand, S.P. GC-MS Analysis of Bioactive Compounds on Ethanolic Leaf Extract of Phyllodium pulchellum L. Desv. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 114–118. [Google Scholar]
- Gothai, S.; Vijayarathna, S.; Chen, Y.; Kanwar, J.R.; Wahab, H.A.; Sasidharan, S. In vitro-scientific evaluation on anti-Candida albicans activity, antioxidant properties, and phytochemical constituents with the identification of antifungal active fraction from traditional medicinal plant Couroupita guianensis Aubl. Flower. J. Complement. Med. Res. 2018, 8, 5–101. [Google Scholar] [CrossRef]
- Cho, Y.E.; Byun, Y.M.; Kwak, E.H.; Yoon, J.S.; Oh, H.M.; Kim, J.W.; Shin, H.S.; Kwon, C.S. Potential Antioxidant Trace Mineral (Zn, Mn, Cu and Fe) Concentrations Measured by Biochemical Indices in South Koreans. Food Sci. Nutr. 2004, 9, 374–382. [Google Scholar] [CrossRef]
- Kremer, D.; Müller, I.D.; Stabentheiner, E.; Vitali, D.; Kopričanec, M.; Ruščić, M.; Kosalec, I.; Bezić, N.; Dunkić, V. Phytochemical and Micromorphological Traits of Endemic Micromeria pseudocroatica (Lamiaceae). Nat. Prod. Commun. 2012, 7, 1934578X1200701231. [Google Scholar] [CrossRef] [Green Version]
- García-Galdeano, J.M.; Villalón-Mir, M.; Medina-Martínez, J.; Vázquez-Foronda, L.M.; Zamora-Bustillos, J.G.; Agil, A.; Moor-Davie, S.M.F.; Navarro-Alarcón, M. Zn, Cu, and Fe Concentrations in Dehydrated Herbs (Thyme, Rosemary, Cloves, Oregano, and Basil) and the Correlation with the Microbial Counts of Listeria monocytogenes and Other Foodborne Pathogens. Foods 2020, 9, 1658. [Google Scholar] [CrossRef]
- Al-Yousef, H.; Fantoukh, O.; El-Sayed, M.; Amina, M.; Adel, R.; Hassan, W.; Abdelaziz, S. Metabolic profiling and biological activities of the aerial parts of Micromeria imbricata Forssk. growing in Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 5609–5616. [Google Scholar] [CrossRef]
- Sivaraj, R.; Rahman, P.K.S.M.; Rajiv, P.; Vanathi, P.; Venckatesh, R. Biosynthesis and characterization of Acalyphaindica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. Spectrochim. Acta A 2014, 129, 255–258. [Google Scholar] [CrossRef]
- Shahneh, F.Z.; Baradaran, B.; Majidi, J.; Babaloo, Z. Echinophoraplatyloba DC (Apiaceae) crude extract induces apoptosis in human prostate adenocarcinoma cells (PC-3). Biomed. J. 2014, 37, 298–304. [Google Scholar]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. Assay Guidance Manual 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK144065/?report=reader (accessed on 11 March 2022).
Element | Concentration (µg. Kg−1 or ppb) | |||
---|---|---|---|---|
Leaf WE * | Stem WE | Flower WE | Root WE | |
Ag | 0.286 | 0.043 | 0.145 | 0.204 |
Al | 33.514 | 17.991 | 27.264 | 65.201 |
Ba−1 | 21.494 | 14.663 | 15.640 | 19.218 |
Cd | 0.067 | 0.257 | 0.086 | 0.136 |
Cr | 7.783 | 4.977 | 5.891 | 6.972 |
Co | 0.344 | 0.194 | 0.441 | 1.643 |
Cs | 0.020 | 0.041 | 0.062 | 0.024 |
Cu | 8.969 | 6.882 | 18.716 | 11.910 |
Fe | 346.751 | 165.348 | 238.593 | 228.406 |
Ga | 0.174 | 0.115 | 0.123 | 0.174 |
Li | 1.305 | 1.006 | 0.859 | 0.496 |
Mn | 81.700 | 23.311 | 43.494 | 48.519 |
Mo | 1.245 | 0.607 | 0.305 | 1.102 |
Ni | 10.784 | 3.492 | 9.320 | 6.977 |
Pb | 1.066 | 1.494 | 1.210 | 2.270 |
Rb | 13.949 | 14.384 | 0.908 | 12.532 |
Sr | 67.704 | 23.018 | 38.965 | 25.692 |
V | 0.181 | 0.095 | 0.091 | 1.170 |
Zn | 85.881 | 77.144 | 58.116 | 25.926 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Nuri, M.; Abu-Reidah, I.M.; Alhajeh, A.A.; Omar, G.; Adwan, G.; Warad, I. GC–MS-Based Metabolites Profiling, In Vitro Antioxidant, Anticancer, and Antimicrobial Properties of Different Solvent Extracts from the Botanical Parts of Micromeria fruticosa (Lamiaceae). Processes 2022, 10, 1016. https://doi.org/10.3390/pr10051016
Al-Nuri M, Abu-Reidah IM, Alhajeh AA, Omar G, Adwan G, Warad I. GC–MS-Based Metabolites Profiling, In Vitro Antioxidant, Anticancer, and Antimicrobial Properties of Different Solvent Extracts from the Botanical Parts of Micromeria fruticosa (Lamiaceae). Processes. 2022; 10(5):1016. https://doi.org/10.3390/pr10051016
Chicago/Turabian StyleAl-Nuri, Mohammad, Ibrahim M. Abu-Reidah, Anwar A. Alhajeh, Ghadeer Omar, Ghaleb Adwan, and Ismail Warad. 2022. "GC–MS-Based Metabolites Profiling, In Vitro Antioxidant, Anticancer, and Antimicrobial Properties of Different Solvent Extracts from the Botanical Parts of Micromeria fruticosa (Lamiaceae)" Processes 10, no. 5: 1016. https://doi.org/10.3390/pr10051016
APA StyleAl-Nuri, M., Abu-Reidah, I. M., Alhajeh, A. A., Omar, G., Adwan, G., & Warad, I. (2022). GC–MS-Based Metabolites Profiling, In Vitro Antioxidant, Anticancer, and Antimicrobial Properties of Different Solvent Extracts from the Botanical Parts of Micromeria fruticosa (Lamiaceae). Processes, 10(5), 1016. https://doi.org/10.3390/pr10051016