A Method to Derive the Characteristic and Kinetic Parameters of 1,1-Bis(tert-butylperoxy)cyclohexane from DSC Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Calculating Characteristic Parameters from Recovered Peak Curve Data
Forming Peak Curve Using the Characteristic Parameters
2.2. Calculating Kinetics Parameters of nth-Order Model from a Single DSC Measurement
2.2.1. Simulations Using nth-Order Kinetic Parameters
Isothermal Simulations
Isoconversional Simulations
2.3. Calculating Kinetics Parameters of the Autocatalytic Model from a Single DSC Measurement
2.4. Calculating nth Order Kinetics Parameters from Multiple DSC Measurements
2.4.1. ASTM698 and Flynn/Wall/Ozawa Method
2.4.2. ASTM2890 and the Kissinger Method
3. Results
3.1. Derived Characteristic Parameters
Simulation Using Characteristic Temperatures
3.2. Derived Kinetics Parameters
3.2.1. Derived Kinetics Parameters of nth Order by B/D Method (ASTM E2041)
3.2.2. Isothermal and Isoconversional Simulation
3.3. Ozawa Analysis Method (ASTM E698)
3.4. Kissinger Analysis Method (ASTM E2890)
3.5. Derived Autocatalytic Model Parameters
3.6. Prediction
4. Discussion
- Before deriving the characteristic parameters, the raw peak curve of DSC measurement should be normalized first. Drawing a baseline to normalize the peak curve was the first major task and all the characteristics could be derived afterwards.
- We can make simulation predictions through the existing data set for the data of some heating rate that have not been measured yet. The method of these parts could be determined by Section 2.1. and Section 3.6.
- Since identifying autocatalytic reactions is vital in terms of evaluating thermal risks, through the comparison, we could say BTPBC would be ascribed to the class of autocatalytic substances.
- The variation of kinetic parameters, such as the apparent activation energy and the reaction order, would affect the peak curve (Equations (3) and (4) and with reaction model f(α) = (1 − α)n), as shown in Figure 18. Less reaction would cause peak curve, expansion, and vice versa. Likewise, less apparent activation energy would cause peak curve expansion and vice versa. The above-mentioned is shown in Figure 18a.
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, W.T.; Chen, W.C.; You, M.L.; Tsai, Y.T.; Shu, C.M. Evaluation of thermal decomposition phenomenon for 1,1-bis(tert- butylperoxy)-3,3,5-trimethylcyclohexane by DSC and VSP2. J. Therm. Anal. Calorim. 2015, 122, 1125–1133. [Google Scholar] [CrossRef]
- Hsueh, K.H.; Chen, W.T.; Chu, Y.C.; Tsai, L.C.; Shu, C.M. Thermal reactive hazards of 1,1-bis(tert-butylperoxy)cyclohexane with nitric acid contaminants by DSC. J. Therm. Anal. Calorim. 2012, 109, 1253–1260. [Google Scholar] [CrossRef]
- Brown, M.E.; Maciejewski, M.; Vyazovkin, S.; Nomen, R.; Sempere, J.; Burnham, A.; Opfermann, J.; Strey, R.; Anderson, H.L.; Kemmler, A.; et al. Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results. Thermochim. Acta 2000, 355, 125–143. [Google Scholar] [CrossRef]
- Ouyang, Q.; Wu, C.; Huang, L. Methodologies, principles and prospects of applying big data in safety science research. Saf. Sci. 2018, 101, 60–71. [Google Scholar] [CrossRef]
- Pasquetto, I.V.; Borgman, C.L.; Wofford, M.F. Uses and Reuses of Scientific Data: The Data Creators’ Advantage. Harvard Data Sci. Rev. 2019, 12. [Google Scholar] [CrossRef]
- Pasquetto, I.V.; Randles, B.M.; Borgman, C.L. On the reuse of scientific data. Data Sci. J. 2017, 16, 8. [Google Scholar] [CrossRef] [Green Version]
- Scalia, G.; Pelucchi, M.; Stagni, A.; Cuoci, A.; Faravelli, T.; Pernici, B. Towards a scientific data framework to support scientific model development. Data Sci. J. 2019, 2, 245–273. [Google Scholar] [CrossRef] [Green Version]
- Henkelman, G. 100 Trade Center Drive Champaign, IL 61820–7237. Available online: https://www.wolfram.com/mathematica/index.php.en?source=footer (accessed on 5 May 2022).
- Hsueh, K.H.; Chen, W.C.; Liu, S.H.; Shu, C.M. Thermal parameters study of 1,1-bis(tert-butylperoxy)cyclohexane at low heating rates with differential scanning calorimetry. J. Therm. Anal. Calorim. 2014, 118, 1675–1683. [Google Scholar] [CrossRef]
- Brown, M.E. Introduction to Thermal Analysis: Techniques and Applications, 2nd ed.; Chapman and Hall: New York, NY, USA, 2001; pp. 181–214. ISBN 978-1-4020-0472-8. [Google Scholar]
- Chiang, C.L.; Liu, S.H.; Cao, C.R.; Hou, H.Y.; Shu, C.M. Multiapproach thermodynamic and kinetic characterization of the thermal hazards of 2, 2’-azobis (2-methylpropionate) alone and when mixed with several solvents. J. Loss Prev. Process Ind. 2018, 51, 150–158. [Google Scholar] [CrossRef]
- Gao, P.F.; Liu, S.H.; Zhang, B.; Cao, C.R.; Shu, C.M. Complex thermal analysis and runaway reaction of 2,2’-azobis (isobutyronitrile) using DSC, STA, VSP2, and GC/MS. J. Loss Prev. Process Ind. 2019, 60, 87–95. [Google Scholar] [CrossRef]
- Wang, S.; Peng, X.; Yang, S.; Li, H.; Zhang, J.; Chen, L.; Chen, W. Numerical and experimental studies on decomposition and vent of di-tertbutyl peroxide in pressure vessel. Process Saf. Environ. Prot. 2018, 120, 97–106. [Google Scholar] [CrossRef]
- Liu, S.H.; Cao, C.R.; Lin, W.C.; Shu, C.M. Experimental and numerical simulation study of the thermal hazards of four azo compounds. J. Hazard. Mater. 2019, 365, 164–177. [Google Scholar] [CrossRef] [PubMed]
- TA Instrument. Interpreting Unexpected Events and Transitions in DSC Results. Available online: https://www.tainstruments.com/pdf/literature/TA039.pdf (accessed on 5 May 2022).
- TA Instrument. A Review of DSC Kinetics Methods. Available online: https://www.tainstruments.com/pdf/literature/TA073.pdf (accessed on 5 May 2022).
- STARe Software. Available online: https://www.eng.uc.edu/~beaucag/Classes/Characterization/DMA Lab/DMA STARe SW manual ver 9_0 red.pdf (accessed on 5 May 2022).
- Wolfram Research, Manipulate, Wolfram Language Function. Available online: https://reference.wolfram.com/language/ref/Manipulate.html (accessed on 5 May 2022).
- Wolfram Research, Using Manipulate to Dynamically Correct the Baseline of a Signal. Available online: https://mathematica.stackexchange.com/questions/58858/using-manipulate-to-dynamically-correct-the-baseline-of-a-signal (accessed on 5 May 2022).
- Tseng, J.M.; Hsieh, T.F.; Chang, Y.M.; Yang, Y.C.; Chen, L.Y.; Lin, C.P. Kinetic prediction of thermal hazard of liquid organic peroxides by non-isothermal and isothermal kinetic model of DSC tests. J. Therm. Anal. Calorim. 2011, 1093, 1095–1103. [Google Scholar] [CrossRef]
- Netzsch Group. An Introduction to n-th Order and Autocatalysis Reactions. Available online: https://kinetics.netzsch.com/es/learn/n-th-order-autocatalitic-reactions/ (accessed on 5 May 2022).
- Mettler-Toledo. Kinetics nth Order-Overview. Available online: https://www.mt.com/sg/en/home/products/Laboratory_Analytics_Browse/TA_Family_Browse/TA_software_browse/STARe_Software_Option_Kinetics_Order_1.html (accessed on 15 December 2021).
- 23. ASTM E2041; Standard Test Method for Estimating Kinetic Parameters by Differential Scanning Calorimeter Using the Borchardt and Daniels Method. ASTM International: West Conshohocken, PA, USA, 2018.
- TA Instrument. Reviewing and Comparing of DSC Kinetics Methods. Available online: https://www.azom.com/article.aspx?ArticleID=12105 (accessed on 5 May 2021).
- Khawam, A.; Flanagan, D.R. Solid-state kinetic models: Basics and mathematical fundamentals. J. Phys. Chem. 2006, 110, 17315–17328. [Google Scholar] [CrossRef]
- Heinze, S.; Echtermeyer, A.T. A practical approach for data gathering for polymer cure simulations. Appl. Sci. 2018, 8, 2227. [Google Scholar] [CrossRef] [Green Version]
- Snegirev, A.Y.; Talalov, V.A.; Stepanov, V.V.; Korobeinichev, O.P.; Gerasimov, I.E.; Shmakov, A.G. Autocatalysis in thermal decomposition of polymers. Polym. Degrad. Stab. 2017, 137, 151–161. [Google Scholar] [CrossRef]
- ASTM E2070; Standard Test Method for Kinetic Parameters by Differential Scanning Calorimetry Using Isothermal Methods. ASTM International: West Conshohocken, PA, USA, 2003.
- Wolfram Research, LinearModelFit, Wolfram Language Function. Available online: https://reference.wolfram.com/language/ref/LinearModelFit.html (accessed on 5 May 2022).
- Vyazovkin, S.; Wight, C.A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta 1999, 340, 53–68. [Google Scholar] [CrossRef]
- Drozin, D.; Sozykin, S.; Ivanova, N.; Olenchikova, T.; Krupnova, T.; Krupina, N.; Avdin, V. Kinetic calculation: Software tool for determining the kinetic parameters of the thermal decomposition process using the Vyazovkin Method. SoftwareX 2020, 11, 100359. [Google Scholar] [CrossRef]
- Šimon, P. Isoconversional methods. J. Therm. Anal. Calorim. 2004, 76, 123–132. [Google Scholar] [CrossRef]
- Flynn, J.H. The isoconversional method for determination of energy of activation at constant heating rates. J. Therm. Anal. Calorim. 1983, 27, 95–102. [Google Scholar] [CrossRef]
- Stanko, M.; Stommel, M. Kinetic prediction of fast curing polyurethane resins by model-free isoconversional methods. Polymers 2018, 10, 698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abliz, D.; Artys, T.; Ziegmann, G. Influence of model parameter estimation methods and regression algorithms on curing kinetics and rheological modelling. J. Appl. Polym. Sci. 2017, 134, 45137. [Google Scholar] [CrossRef]
- Bernath, A.; Kärger, L.; Henning, F. Accurate cure modeling for isothermal processing of fast curing epoxy resins. Polymers 2016, 8, 390. [Google Scholar] [CrossRef]
- Jansen, K.M.B.; Qian, C.; Ernst, L.J.; Bohm, C.; Kessler, A.; Preu, H.; Stecher, M. Kinetic characterisation of molding compounds. In Proceedings of the 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, EuroSime, London, UK, 16–18 April 2007; pp. 1–5. [Google Scholar]
- Vafayan, M.; Beheshty, M.H.; Ghoreishy, M.H.R.; Abedini, H. The prediction capability of the kinetic models extracted from isothermal data in non-isothermal conditions for an epoxy prepreg J. Compos. Mater. 2014, 48, 1039–1048. [Google Scholar] [CrossRef]
- Zhang, C.; Binienda, W.K.; Zeng, L.; Ye, X.; Chen, S. Kinetic study of the novolac resin curing process using model fitting and model-free methods. Thermochim. Acta 2011, 523, 63–69. [Google Scholar] [CrossRef]
- ASTM E698; Standard Test Method for Kinetic Parameters for Thermally Unstable Materials Using Differential Scanning Calorimetry and the Flynn/Wall/Ozawa Method. ASTM International: West Conshohocken, PA, USA, 2016.
- Blaine, R.L. Interlaboratory Kinetics Studies Using ASTM International Standards E2041 and E698 and Trityl Azide1. Available online: http://www.tainstruments.com/pdf/literature/TA313.pdf (accessed on 5 May 2021).
- ASTM E 2890; Standard Test Method for Kinetic Parameters for Thermally Unstable Materials by Differential Scanning Calorimetry Using the Kissinger Method. ASTM International: West Conshohocken, PA, USA, 2012.
- Scientific Events. Predicting DSC Measurements-STK-Online Scientific events. Available online: http://www.stk-online.ch/Sisseln 2011/Compil_Baati Nadia.pdf (accessed on 5 May 2022).
β/°C min−1 | Source | T0/°C | TP/°C | TP–ext/°C | Tend/°C | FWHM/°C | FWHM/s |
---|---|---|---|---|---|---|---|
0.5 | Calculated | 100.250 | 124.840 | 126.370 | 139.470 | 22.770 | 2732.522 |
DSC measurement | 122.980 | 124.580 | 129.030 | 136.590 | 19.890 | ||
1 | Calculated | 108.270 | 131.770 | 132.990 | 146.620 | 22.350 | 1340.775 |
DSC measurement | 111.530 | 131.630 | 132.930 | 144.660 | 20.170 | ||
2 | Calculated | 115.100 | 138.690 | 139.930 | 153.750 | 22.480 | 674.230 |
DSC measurement | 115.870 | 138.680 | 139.850 | 153.420 | 22.030 | ||
4 | Calculated | 121.890 | 146.840 | 148.190 | 162.090 | 23.400 | 351.192 |
DSC measurement | 121.950 | 146.920 | 148.050 | 162.230 | 23.600 | ||
6 | Calculated | 128.470 | 151.900 | 153.380 | 167.950 | 23.030 | 230.393 |
DSC measurement | 128.550 | 151.890 | 153.300 | 167.890 | 23.110 | ||
8 | Calculated | 132.490 | 156.760 | 158.040 | 173.580 | 23.570 | 176.835 |
DSC measurement | 132.720 | 156.720 | 157.980 | 173.530 | 23.700 | ||
10 | Calculated | 135.880 | 159.870 | 160.970 | 177.080 | 23.270 | 139.399 |
DSC measurement | 135.750 | 159.860 | 160.930 | 177.230 | 23.510 | ||
Total difference | Mean Error | −3.857 | 0.056 | −0.314 | 0.713 | 0.694 | |
Standard deviation | 8.404 | 0.111 | 1.035 | 1.207 | 1.291 |
β/°C min−1 | Source | qmax/W g−1 | △Hd/J | Left Area | Right Area | L/R Area Ratio |
---|---|---|---|---|---|---|
0.5 | Calculated | 1.81 | 1232.183 | 0.624 | 0.376 | 1.661 |
DSC measurement | 1.51 | 802.100 | 0.577 | 0.423 | 1.366 | |
1 | Calculated | 3.65 | 1141.903 | 0.611 | 0.389 | 1.568 |
DSC measurement | 3.1 | 821.820 | 0.600 | 0.401 | 1.497 | |
2 | Calculated | 7.98 | 1133.963 | 0.610 | 0.390 | 1.566 |
DSC measurement | 7.7 | 1034.600 | 0.605 | 0.395 | 1.530 | |
4 | Calculated | 13.4 | 1031.033 | 0.606 | 0.394 | 1.539 |
DSC measurement | 13.38 | 1020.990 | 0.605 | 0.395 | 1.532 | |
6 | Calculated | 18.8 | 984.570 | 0.570 | 0.430 | 1.326 |
DSC measurement | 18.83 | 979.760 | 0.570 | 0.430 | 1.325 | |
8 | Calculated | 23.6 | 1011.177 | 0.572 | 0.428 | 1.338 |
DSC measurement | 23.6 | 1003.300 | 0.571 | 0.430 | 1.328 | |
10 | Calculated | 31.9 | 1093.774 | 0.560 | 0.440 | 1.273 |
DSC measurement | 32.08 | 1106.860 | 0.558 | 0.442 | 1.262 | |
Total difference | Mean Error | 0.140 | 122.739 | 0.010 | –0.010 | 0.061 |
Standard deviation | 0.248 | 178.979 | 0.017 | 0.017 | 0.106 |
β/°C min−1 | FWHM/°C | qmax/W g−1 | Peak/°C | L/R FWHM Ratio | L/R Area Ratio |
---|---|---|---|---|---|
0.5 | 22.770 | 1.807 | 124.840 | 1.494 | 1.661 |
1 | 22.350 | 3.653 | 131.770 | 1.439 | 1.568 |
2 | 22.480 | 7.975 | 138.690 | 1.423 | 1.566 |
4 | 23.400 | 13.388 | 146.840 | 1.478 | 1.539 |
6 | 23.030 | 18.825 | 151.900 | 1.308 | 1.326 |
8 | 23.570 | 23.645 | 156.760 | 1.312 | 1.338 |
10 | 23.270 | 31.889 | 159.870 | 1.282 | 1.273 |
β/°C min−1 | Mass/mg | lnA | Ea/kJ mol−1 | n | R2 | Mean Error | Stand Derivation |
---|---|---|---|---|---|---|---|
0.5 | 4.5 | 33.572 | 134.431 | 1 | 0.9996 | 0.001 | 0.010 |
1 | 4.6 | 36.276 | 143.402 | 1 | 0.9999 | 0.008 | 0.009 |
2 | 5.2 | 37.122 | 146.515 | 1 | 0.9997 | 0.011 | 0.019 |
4 | 5.0 | 37.066 | 146.780 | 1 | 0.9999 | 0.018 | 0.034 |
6 | 4.8 | 43.202 | 168.464 | 1.15 | 0.9998 | 0.006 | 0.036 |
8 | 4.6 | 42.491 | 166.832 | 1.16 | 0.9995 | 0.021 | 0.063 |
10 | 4.6 | 44.292 | 173.542 | 1.21 | 0.9989 | 0.058 | 0.149 |
β/°C min−1 | n | log10β | Tp/K | TP-ext/K | 1/TP | TP-ext−1/K−1 | (log10β TP−1)2 | (log10β TP-ext−1)2 |
---|---|---|---|---|---|---|---|---|
0.5 | 1 | −0.301 | 397.99 | 399.52 | 0.00251 | 0.00250 | −0.0000019 | −0.0000019 |
1 | 1 | 0.000 | 404.92 | 406.14 | 0.00247 | 0.00246 | ||
2 | 1 | 0.301 | 411.84 | 413.08 | 0.00243 | 0.00242 | 0.0000018 | 0.0000018 |
4 | 1 | 0.602 | 419.99 | 421.34 | 0.00238 | 0.00237 | 0.0000034 | 0.0000034 |
β/°C min−1 | lnβ | TP/K | TP-ext/K | ln[β/Tp2] | ln[β/TP-ext2] | Tp−1/K−1 | TP-ext−1/K−1 |
---|---|---|---|---|---|---|---|
0.5 | −0.693 | 397.99 | 399.52 | −12.666 | −12.674 | 0.00251 | 0.00250 |
1 | 0.000 | 404.92 | 406.14 | −12.007 | −12.013 | 0.00247 | 0.00246 |
2 | 0.693 | 411.84 | 413.08 | −11.348 | −11.354 | 0.00243 | 0.00242 |
4 | 1.386 | 419.99 | 421.34 | −10.694 | −10.701 | 0.00238 | 0.00237 |
β/°C min−1 | Mass/mg | lnA | Ea/kJ mol−1 | n | m | R2 | Mean Error | Stand Derivation |
---|---|---|---|---|---|---|---|---|
0.5 | 4.5 | 29.369 | 120.262 | 1 | 0.15 | 0.9997 | 0.000 | 0.008 |
1 | 4.6 | 29.206 | 119.592 | 0.93 | 0.15 | 0.9999 | 0.006 | 0.007 |
2 | 5.2 | 32.414 | 130.103 | 1 | 0.15 | 0.9998 | 0.005 | 0.013 |
4 | 5.0 | 32.520 | 130.622 | 1 | 0.15 | 0.9996 | 0.007 | 0.030 |
6 | 4.8 | 36.847 | 145.890 | 1.1 | 0.15 | 0.9997 | −0.004 | 0.032 |
8 | 4.6 | 36.872 | 146.606 | 1.12 | 0.15 | 0.9993 | 0.006 | 0.065 |
10 | 4.6 | 38.552 | 152.782 | 1.16 | 0.15 | 0.9989 | 0.040 | 0.146 |
β | Mass | nth Order Model | Autocatalytic Model | Ozawa Method | Kissinger Method | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
lnA | Ea × 103 | n | lnA | Ea × 103 | n | m | lnA | Ea × 103 | lnA | Ea × 103 | ||
0.5 | 4.5 | 33.572 | 134.431 | 1 | 29.369 | 120.262 | 1 | 0.15 | 34.934 | 125.530 | 34.796 | 125.185 |
1 | 4.6 | 36.276 | 143.402 | 1 | 29.206 | 119.592 | 0.93 | 0.15 | ||||
2 | 5.2 | 37.122 | 146.515 | 1 | 32.414 | 130.103 | 1 | 0.15 | ||||
4 | 5 | 37.066 | 146.780 | 1 | 32.520 | 130.622 | 1 | 0.15 | ||||
6 | 4.8 | 43.202 | 168.464 | 1.15 | 36.847 | 145.890 | 1.1 | 0.15 | ||||
8 | 4.6 | 42.491 | 166.832 | 1.16 | 36.872 | 146.606 | 1.12 | 0.15 | ||||
10 | 4.6 | 44.292 | 173.542 | 1.21 | 38.552 | 152.782 | 1.16 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, T.; Hsueh, K.-H.; Liu, C.-C.; Cao, C.-R.; Shu, C.-M. A Method to Derive the Characteristic and Kinetic Parameters of 1,1-Bis(tert-butylperoxy)cyclohexane from DSC Measurements. Processes 2022, 10, 1026. https://doi.org/10.3390/pr10051026
Chang T, Hsueh K-H, Liu C-C, Cao C-R, Shu C-M. A Method to Derive the Characteristic and Kinetic Parameters of 1,1-Bis(tert-butylperoxy)cyclohexane from DSC Measurements. Processes. 2022; 10(5):1026. https://doi.org/10.3390/pr10051026
Chicago/Turabian StyleChang, Tung, Kuang-Hua Hsueh, Cheng-Chang Liu, Chen-Rui Cao, and Chi-Min Shu. 2022. "A Method to Derive the Characteristic and Kinetic Parameters of 1,1-Bis(tert-butylperoxy)cyclohexane from DSC Measurements" Processes 10, no. 5: 1026. https://doi.org/10.3390/pr10051026
APA StyleChang, T., Hsueh, K. -H., Liu, C. -C., Cao, C. -R., & Shu, C. -M. (2022). A Method to Derive the Characteristic and Kinetic Parameters of 1,1-Bis(tert-butylperoxy)cyclohexane from DSC Measurements. Processes, 10(5), 1026. https://doi.org/10.3390/pr10051026