A Synthetic Chart for Internal Stability Assessment of Soils Based on Soil PSD Curves
Abstract
:1. Introduction
2. A New Method and Synthetic Chart for the Soils’ Internal Stability Evaluation
- α refers to a parameter relating the initial break of the curve, namely, the inflection point along with the curve, which indicates the largest size of the particle.
- β refers to a parameter relating the uniformity of the particle-size distribution curve, namely, the steepest slope on the curve. The point of the maximum slope along with the PSD curve indicates the dominant size of particles in the soil.
- γ refers to a parameter relating to the curve shape as it proceeds towards the fine area, which affects the break onto the finer size of the particle of the specimen.
- δ refers to a parameter relating to the number of fines in the soil, which influences the shape along with the curve’s finer particle size part.
- φ refers to a parameter relating to the second breaking point along the curve.
- χ refers to a parameter relating to the second steep slope along the curve.
- ψ refers to a parameter related to the second shape along the curve.
- w refers to a weighting factor for the sub-curves, subject to 0 < w < 1.
3. Internal Stability Analysis of Soils
3.1. Sand–Gravel Soils’ Internal Stability Analysis
3.2. Internal Stability Analysis of (Clay)–Silt–Sand–Gravel Soils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
The size of the particle corresponding to 15% by weight of the coarse fraction | |
The size of the particle corresponding to 85% by weight of the fine fraction. | |
The mass fraction of particles less than a particle with size | |
The incremental mass fraction acquired among particle sizes and | |
The percentage by mass of particles greater than . | |
The FBP mathematical expression representing the PSD curves of soils | |
The inverse function of . |
Appendix A
References
- Moraci, N.; Mandaglio, M.C.; Ielo, D. A New Theoretical Method to Evaluate the Internal Stability of Granular Soils. Can. Geotech. J. 2012, 49, 45–58. [Google Scholar] [CrossRef]
- Zhou, Z.; Ranjith, P.G.; Li, S. Criteria for Assessment of Internal Stability of Granular Soil. Proc. Inst. Civ. Eng. Geotech. Eng. 2017, 170, 73–83. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Ranjith, P.G.; Li, S.C. An Experimental Testing Apparatus for Study of Suffusion of Granular Soils in Geological Structures. Tunn. Undergr. Space Technol. 2018, 78, 222–230. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Ranjith, P.G.; Yang, W.M.; Shi, S.S.; Wei, C.C.; Li, Z.H. A New Set of Scaling Relationships for DEM-CFD Simulations of Fluid–Solid Coupling Problems in Saturated and Cohesiveless Granular Soils. Comp. Part. Mech. 2019, 6, 657–669. [Google Scholar] [CrossRef]
- Richards, K.S.; Reddy, K.R. Critical Appraisal of Piping Phenomena in Earth Dams. Bull. Eng. Geol. Environ. 2007, 66, 381–402. [Google Scholar] [CrossRef]
- Wan, C.F.; Fell, R. Assessing the Potential of Internal Instability and Suffusion in Embankment Dams and Their Foundations. J. Geotech. Geoenviron. Eng. 2008, 134, 401–407. [Google Scholar] [CrossRef]
- Suits, L.D.; Sheahan, T.C.; Chang, D.S.; Zhang, L.M. A Stress-Controlled Erosion Apparatus for Studying Internal Erosion in Soils. Geotech. Test. J. 2011, 34, 103889. [Google Scholar] [CrossRef]
- Chang, D.S.; Zhang, L.M. Critical Hydraulic Gradients of Internal Erosion under Complex Stress States. J. Geotech. Geoenviron. Eng. 2013, 139, 1454–1467. [Google Scholar] [CrossRef]
- Fannin, R.J.; Slangen, P. On the Distinct Phenomena of Suffusion and Suffosion. Geotech. Lett. 2014, 4, 289–294. [Google Scholar] [CrossRef]
- Moraci, N.; Mandaglio, M.C.; Ielo, D. Analysis of the Internal Stability of Granular Soils Using Different Methods. Can. Geotech. J. 2014, 51, 1063–1072. [Google Scholar] [CrossRef]
- ICOLD. Geotextiles as Filters and Transitions in Fill Dams; International Commission on Large Dams: Paris, France, 1986. [Google Scholar]
- Canadian Dam Association. Geotechnical Considerations for Dam Safety; Canadian Dam Association: Moose Jaw, SK, Canada, 2007. [Google Scholar]
- Kezdi, A. Physical Properties of Soils. Soil Mech. Found. Eng. 1968, 5, 367–368. [Google Scholar] [CrossRef]
- Sherard, J.L. Sinkholes in dams of coarse, broadly graded soils. In Proceedings of the 13th International Congress on Large Dams, New Delhi, India, 29 October–2 November 1979; Volume 2, pp. 25–35. [Google Scholar]
- Kenney, T.; Lau, D. Internal Stability of Granular Filters. Can. Geotech. J. 1985, 22, 215–225. [Google Scholar] [CrossRef]
- Chapuis, R. Similarity of Internal Stability-Criteria for Granular Soils. Can. Geotech. J. 1992, 29, 711–713. [Google Scholar] [CrossRef]
- Li, M.; Fannin, R.J. Comparison of Two Criteria for Internal Stability of Granular Soil. Can. Geotech. J. 2008, 45, 1303–1309. [Google Scholar] [CrossRef]
- Moraci, N.; Mandaglio, M.C.; Ielo, D. Reply to the Discussion by Ni et al. on “Analysis of the Internal Stability of Granular Soils Using Different Methods”. Can. Geotech. J. 2015, 52, 385–391. [Google Scholar] [CrossRef]
- Ni, X.; Wang, Y.; Dallo, Y.A.H. Discussion of “Analysis of the Internal Stability of Granular Soils Using Different Methods. ” Can. Geotech. J. 2015, 52, 382–384. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Ranjith, P.G.; Li, S. Optimal Model for Particle Size Distribution of Granular Soil. Proc. Inst. Civ. Eng. Geotech. Eng. 2016, 169, 73–82. [Google Scholar] [CrossRef]
- Zhou, Z.Q. Evolutionary Mechanism of Water Inrush through Filling Strcutures in Tunnels and Engineering Applications. Ph.D. Thesis, Shandong University, Jinan, China, 2016. [Google Scholar]
- Fredlund, M.D.; Fredlund, D.G.; Wilson, G.W. An Equation to Represent Grain-Size Distribution. Can. Geotech. J. 2000, 37, 817–827. [Google Scholar] [CrossRef]
- Lafleur, J.; Mlynarek, J.; Rollin, A. Filtration of Broadly Graded Cohesionless Soils. J. Geotech. Eng. ASCE 1989, 115, 1747–1768. [Google Scholar] [CrossRef]
- Burenkova, V.V. Assessment of suffusion in non-cohesive and graded soils. In Proceedings of the 1st International Conference “Geo-Filters”, Balkema, Rotterdam, The Netherlands, 20–22 October 1993; pp. 357–360. [Google Scholar]
- Skempton, A.; Brogan, J. Experiments on Piping in Sandy Gravels. Geotechnique 1994, 44, 449–460. [Google Scholar] [CrossRef]
- Mlynarek, J.; Vermeeresch, O.G.; Deberardino, S. Evaluation of Filtration Design Criterion for Nonwoven Heat-Bonded Geotextiles. Proc. Geosynth. 1995, 95, 189–202. [Google Scholar]
- Chapuis, R.P.; Contant, A.; Baass, K.A. Migration of Fines in 0–20 Mm Crushed Base during Placement, Compaction, and Seepage under Laboratory Conditions. Can. Geotech. J. 1996, 33, 168–176. [Google Scholar] [CrossRef]
- Lafleur, J. Selection of Geotextiles to Filter Broadly Graded Cohesionless Soils. Geotext. Geomembr. 1999, 17, 299–312. [Google Scholar] [CrossRef]
- Locke, M.; Indraratna, B.; Adikari, G. Time-Dependent Particle Transport through Granular Filters. J. Geotech. Geoenviron. Eng. 2001, 127, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Mao, C.X. Study on piping and filters: Part I of Piping. J. Rock Soil Mech. 2005, 26, 209–215. [Google Scholar]
- Moffat, R. Experiments on the Internal Stability of Widely Graded Cohesionless Soils; University of British Columbia: Vancouver, BC, Canada, 2005. [Google Scholar]
- Fannin, R.J.; Moffat, R. Observations on Internal Stability of Cohesionless Soils. Geotechnique 2006, 56, 497–500. [Google Scholar] [CrossRef]
- Wan, C.F.; Fell, R. Experimental Investigation of Internal Instability of Soils in Embankment Dams and Their Foundations; School of Civil and Environmental Engineering, The University of New South Wales: Sydney, Australia, 2004. [Google Scholar]
- Indraratna, B.; Israr, J.; Rujikiatkamjorn, C. Geometrical Method for Evaluating the Internal Instability of Granular Filters Based on Constriction Size Distribution. J. Geotech. Geoenviron. Eng. 2015, 141, 04015045. [Google Scholar] [CrossRef] [Green Version]
- Indraratna, B.; Israr, J.; Li, M. Inception of Geohydraulic Failures in Granular Soils—An Experimental and Theoretical Treatment. Geotechnique 2018, 68, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Israr, J.; Indraratna, B. Internal Stability of Granular Filters under Static and Cyclic Loading. J. Geotech. Geoenviron. Eng. 2017, 143, 04017012. [Google Scholar] [CrossRef]
- Israr, J.; Indraratna, B. Study of Critical Hydraulic Gradients for Seepage-Induced Failures in Granular Soils. J. Geotech. Geoenviron. Eng. 2019, 145, 04019025. [Google Scholar] [CrossRef]
Soils | Kezdi | @ F (%) | Sherard | @ F (%) | Kenney & Lau | (S/F) min @ F (%) | New Criterion | Exp. Results |
---|---|---|---|---|---|---|---|---|
Kenney and Lau [13] | ||||||||
1 | U * | 15.5 | U * | 12.75 | S | [email protected] | M | S |
2 | U * | 7.75 | U * | 5.25 | S | [email protected] | S | S |
3 | U * | 12.75 | U * | 10 | S | [email protected] | S | S |
A | S† | ↑ | S† | ↑ | U | [email protected] | / | U(2U1S) # |
As | U * | 6.75 | U * | 3 | M | [email protected] | M | S(1U2S) |
D | U | 26.25 | U | 23.25 | U | [email protected] | U | U(2U1S) |
Ds | U * | 5.25 | U * | 4.25 | S | [email protected] | S | S |
K | U * | 4.75 | U * | 2.5 | S | [email protected] | S | S |
X | U | 16.5 | U | 14.5 | U | [email protected] | U | U |
Y | U | 27.25 | U | 20.75 | U | [email protected] | U | U |
Ys | U | 19 | U | 14 | U | [email protected] | U | U |
20 | U * | 5.75 | U * | 4 | S | [email protected] | S | S |
20A | U * | 3 | U * | 1.75 | S | [email protected] | S | S |
21 | U * | 5 | U * | 4.25 | S | [email protected] | S | S |
21A | U * | 2.75 | U * | 2 | S | [email protected] | S | S |
23 | S | ↑ | S | ↑ | S | [email protected] | S | S |
Lafleur et al. [21] | ||||||||
M8 | U | 20 | U | 18.5 | U | [email protected] | U | U |
M42 | S | ↑ | S | ↑ | S | [email protected] | S | S |
Skempton and Brogan [25] | ||||||||
A | U | 17.5 | U | 17.5 | U | [email protected] | U | U |
B | U | 13 | U | 10.75 | S† | [email protected] | S† | U |
C | U * | 6.75 | U * | 2.5 | S | [email protected] | S | S |
D | U * | 5.25 | U * | 3.25 | S | [email protected] | S | S |
Skempton and Brogan [25], Israr and Indraratna [37] | ||||||||
S1 | S | ↑ | S | ↑ | S | [email protected] | S | S |
S2 | S | ↑ | S | ↑ | S | [email protected] | S | S |
S3 | S | ↑ | S | ↑ | S | [email protected] | S | S |
G | S | ↑ | S | ↑ | S | [email protected] | S | S |
Sand1 | S | ↑ | S | ↑ | S | [email protected] | S | S |
Mlynarek et al. [26] | ||||||||
A1 | S | ↑ | S | ↑ | S | [email protected] | S | S |
C | S† | ↑ | S† | ↑ | U | [email protected] | / | U |
Chapuis [27] | ||||||||
1 | S | ↑ | S | ↑ | U * | 1.23@30 | / | S |
2 | U | 19 | U | 15 | U | [email protected] | U | U |
3 | S | ↑ | S | ↑ | U * | [email protected] | / | S |
Lafleur [28] | ||||||||
G1 | S | ↑ | S | ↑ | S | [email protected] | S | S |
Locke et al. [29] | ||||||||
L1 | U | 24.25 | U | 21.5 | U | [email protected] | U | U |
L2 | U * | 13.5 | U * | 10 | S | [email protected] | S | S |
F9 | U * | 13.5 | U * | 11.5 | S | [email protected] | S | S |
Mao [30] | ||||||||
a | U | 30 | U | 28 | U | [email protected] | U | U |
b | U | 23.75 | U | 17 | U | [email protected] | U | U |
c | U | 16.5 | U | 14.25 | U | [email protected] | U | U |
d | U | 19 | U | 18 | U | [email protected] | U | U |
Fannin and Moffat [32] | ||||||||
D # | U | 15.5 | U | 13.75 | U | [email protected] | U | U |
K # | U * | 3.75 | U * | 3 | S | [email protected] | S | S |
Indraratna et al. [34] | ||||||||
C-1 | S | ↑ | S | ↑ | S | [email protected] | S | S |
C-5 | S | ↑ | S | ↑ | S | [email protected] | S | S |
C-10 | S | ↑ | S | ↑ | S | [email protected] | S | S |
C-20 | S† | ↑ | S† | ↑ | U | [email protected] | / | M(2U2S) |
C-23 | U * | 16.25 | S | ↑ | S | [email protected] | S | S(1U3S) |
C-40 | S† | ↑ | S† | ↑ | U | [email protected] | / | U |
Indraratna et al. [35]; Israr & Indraratna [36,37] | ||||||||
A | S | ↑ | S | ↑ | S | [email protected] | S | S |
X | S | ↑ | S | ↑ | S | [email protected] | S | S |
Soils | Kezdi | @ F (%) | Sherard | @ F (%) | Kenney & Lau | (S/F) min @ F (%) | New Criterion | Exp. Results |
---|---|---|---|---|---|---|---|---|
Burenkova [24] | ||||||||
1 | U | 7.5 | U | 7 | U | [email protected] | U | U |
2 | U | 16.5 | U | 16 | U | [email protected] | U | U |
3 | U | 18 | U | 16.75 | U | [email protected] | U | U |
4 | U | 21.25 | U | 19.75 | U | [email protected] | U | U |
11 | U * | 11 | U * | 9.25 | U * | [email protected] | U * | S |
12 | U * | 16.25 | U * | 14.25 | U * | [email protected] | U * | S |
13 | U * | 18.5 | U * | 16.75 | U * | [email protected] | U * | S |
14 | U * | 22.5 | U * | 20.25 | U * | [email protected] | U * | S |
Mlynarek et al. [26] | ||||||||
A# | U | 16 | U | 14 | U | [email protected] | U | U |
Lafleur [27] | ||||||||
H | U | 22 | U | 21.25 | U | [email protected] | U | U |
Moffat [31] | ||||||||
T5 | U | 25.5 | U | 26.25 | U | [email protected] | U | U |
C20 | U | 24 | U | 20.25 | U | [email protected] | U | U |
C30 | U | 21 | U | 29.75 | U | [email protected] | U | U |
Wan and Fell [33] | ||||||||
1/1A | U * | ↓ | U * | ↓ | U * | [email protected] | U * | S |
2R | U * | ↓ | U * | ↓ | U * | [email protected] | U * | S |
4R | U * | 17.5 | U * | 9 | U * | [email protected] | U * | S |
9 | U * | 17 | U * | 16.75 | U * | [email protected] | U * | S |
10 | U | 11 | U | 7 | U | [email protected] | U | U |
A2 | U | ↓ | U | ↓ | U | [email protected] | U | U |
A3 | U | 28.25 | U | 25 | U | [email protected] | U | U |
B1 | U | 28.75 | U | 26.25 | U | [email protected] | U | U |
B2 | U | ↓ | U | ↓ | U | [email protected] | U | U |
C1 | U | 20 | U | 19 | U | [email protected] | U | U |
D1 | U | 29.25 | U | 25.75 | U | [email protected] | U | U |
RD | U * | 17.75 | U * | 16.25 | U * | [email protected] | U * | S |
5 | U * | 13.5 | U * | 12 | U * | [email protected] | U * | S |
6 | U * | 28.75 | U * | 24.5 | U * | [email protected] | U * | S |
13 | U * | 16.5 | U * | 16.25 | U * | [email protected] | U * | S |
14A | U | 25 | U | 25 | U | [email protected] | U | U/M |
Indraratna et al. [35] | ||||||||
D | U | 28.25 | U | 25.5 | U | [email protected] | U | U |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.; Bai, S.; Hou, J.; Zhou, Z.; Wu, Q.; Lv, X.; Yang, L.; Cao, W.; Ren, Z. A Synthetic Chart for Internal Stability Assessment of Soils Based on Soil PSD Curves. Processes 2022, 10, 807. https://doi.org/10.3390/pr10050807
Lai Y, Bai S, Hou J, Zhou Z, Wu Q, Lv X, Yang L, Cao W, Ren Z. A Synthetic Chart for Internal Stability Assessment of Soils Based on Soil PSD Curves. Processes. 2022; 10(5):807. https://doi.org/10.3390/pr10050807
Chicago/Turabian StyleLai, Yongbiao, Songsong Bai, Jian Hou, Zongqing Zhou, Qiangling Wu, Xiaobo Lv, Liming Yang, Weixun Cao, and Zhengtao Ren. 2022. "A Synthetic Chart for Internal Stability Assessment of Soils Based on Soil PSD Curves" Processes 10, no. 5: 807. https://doi.org/10.3390/pr10050807
APA StyleLai, Y., Bai, S., Hou, J., Zhou, Z., Wu, Q., Lv, X., Yang, L., Cao, W., & Ren, Z. (2022). A Synthetic Chart for Internal Stability Assessment of Soils Based on Soil PSD Curves. Processes, 10(5), 807. https://doi.org/10.3390/pr10050807